ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground states for a nonlocal cubic-quartic Gross-Pitaevskii equation

133   0   0.0 ( 0 )
 نشر من قبل Athanasios Stylianou
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove existence and qualitative properties of ground state solutions to a generalized nonlocal 3rd-4th order Gross-Pitaevskii equation. Using a mountain pass argument on spheres and constructing appropriately localized Palais-Smale sequences we are able to prove existence of real positive ground states as saddle points. The analysis is deployed in the set of possible states, thus overcoming the problem that the energy is unbounded below. We also prove a corresponding nonlocal Pohozaev identity with no rest term, a crucial part of the analysis.



قيم البحث

اقرأ أيضاً

We study the Cauchy problem for the 3D Gross-Pitaevskii equation. The global well-posedness in the natural energy space was proved by Gerard cite{Gerard}. In this paper we prove scattering for small data in the same space with some additional angular regularity, and in particular in the radial case we obtain small energy scattering.
The Gross-Pitaevskii equation is a widely used model in physics, in particular in the context of Bose-Einstein condensates. However, it only takes into account local interactions between particles. This paper demonstrates the validity of using a nonl ocal formulation as a generalization of the local model. In particular, the paper demonstrates that the solution of the nonlocal model approaches in norm the solution of the local model as the nonlocal model approaches the local model. The nonlocality and potential used for the Gross-Pitaevskii equation are quite general, thus this paper shows that one can easily add nonlocal effects to interesting classes of Bose-Einstein condensate models. Based on a particular choice of potential for the nonlocal Gross-Pitaevskii equation, we establish the orbital stability of a class of parameter-dependent solutions to the nonlocal problem for certain parameter regimes. Numerical results corroborate the analytical stability results and lead to predictions about the stability of the class of solutions for parameter values outside of the purview of the theory established in this paper.
176 - Fabrice Bethuel 2008
The purpose of this paper is to provide a rigorous mathematical proof of the existence of travelling wave solutions to the Gross-Pitaevskii equation in dimensions two and three. Our arguments, based on minimization under constraints, yield a full bra nch of solutions, and extend earlier results, where only a part of the branch was built. In dimension three, we also show that there are no travelling wave solutions of small energy.
We consider a system of Gross-Pitaevskii equations in R^2 modelling a mixture of two Bose-Einstein condensates with repulsive interaction. We aim to study the qualitative behaviour of ground and excited state solutions. We allow two different harmoni c and off-centered trapping potentials and study the spatial patterns of the solutions within the Thomas-Fermi approximation as well as phase segregation phenomena within the large-interaction regime.
We consider the 3D Gross-Pitaevskii equation begin{equation} onumber ipartial_t psi +Delta psi+(1-|psi|^2)psi=0 text{ for } psi:mathbb{R}times mathbb{R}^3 rightarrow mathbb{C} end{equation} and construct traveling waves solutions to this equation. Th ese are solutions of the form $psi(t,x)=u(x_1,x_2,x_3-Ct)$ with a velocity $C$ of order $varepsilon|logvarepsilon|$ for a small parameter $varepsilon>0$. We build two different types of solutions. For the first type, the functions $u$ have a zero-set (vortex set) close to an union of $n$ helices for $ngeq 2$ and near these helices $u$ has degree 1. For the second type, the functions $u$ have a vortex filament of degree $-1$ near the vertical axis $e_3$ and $ngeq 4$ vortex filaments of degree $+1$ near helices whose axis is $e_3$. In both cases the helices are at a distance of order $1/(varepsilonsqrt{|log varepsilon|)}$ from the axis and are solutions to the Klein-Majda-Damodaran system, supposed to describe the evolution of nearly parallel vortex filaments in ideal fluids. Analogous solutions have been constructed recently by the authors for the stationary Gross-Pitaevskii equation, namely the Ginzburg-Landau equation. To prove the existence of these solutions we use the Lyapunov-Schmidt method and a subtle separation between even and odd Fourier modes of the error of a suitable approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا