ﻻ يوجد ملخص باللغة العربية
Quantum trajectory-based descriptions of interference between two coherent stationary waves in a double-slit experiment are presented, as given by the de Broglie-Bohm (dBB) and modified de Broglie-Bohm (MdBB) formulations of quantum mechanics. In the dBB trajectory representation, interference between two spreading wave packets can be shown also as resulting from motion of particles. But a trajectory explanation for interference between stationary states is so far not available in this scheme. We show that both the dBB and MdBB trajectories are capable of producing the interference pattern for stationary as well as wave packet states. However, the dBB representation is found to provide the `which-way information that helps to identify the hole through which the particle emanates. On the other hand, the MdBB representation does not provide any which-way information while giving a satisfactory explanation of interference phenomenon in tune with the de Broglies wave particle duality. By counting the trajectories reaching the screen, we have numerically evaluated the intensity distribution of the fringes and found very good agreement with the standard results.
The emission of above-ionization-threshold harmonics results from the recombination of two electron wavepackets moving along a short and a long trajectory in the atomic continuum. Attosecond pulse train generation has so far been attributed to the sh
We explore quantum properties of a which-way detector using thr
We analyze the achievable limits of the quantum information processing of the weak interaction revealed by hyperons with spin. We find that the weak decay process corresponds to an interferometric device with a fixed visibility and fixed phase differ
The computational cost of preparing a quantum state can be substantial depending on the structure of data to be encoded. Many quantum algorithms require repeated sampling to find the answer, mandating reconstruction of the same input state for every
Employing the stochastic wave function method, we study quantum features of stochastic entropy production in nonequilibrium processes of open systems. It is demonstarted that continuous measurements on the environment introduce an additional, non-the