ترغب بنشر مسار تعليمي؟ اضغط هنا

Flat bands and the physics of strongly correlated Fermi systems

87   0   0.0 ( 0 )
 نشر من قبل Vasily Shaginyan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Some materials can have the dispersionless parts in their electronic spectra. These parts are usually called flat bands and generate the corps of unusual physical properties of such materials. These flat bands are induced by the condensation of fermionic quasiparticles, being very similar to the Bose condensation. The difference is that fermions to condense, the Fermi surface should change its topology, leading to violation of time-reversal (T) and particle-hole (C) symmetries. Thus, the famous Landau theory of Fermi liquids does not work for the systems with fermion condensate (FC) so that several experimentally observable anomalies have not been explained so far. Here we use FC approach to explain recent observations of the asymmetric tunneling conductivity in heavy-fermion compounds and graphene and its restoration in magnetic fields, as well as the violation of Leggett theorem, recently observed experimentally in overdoped cuprates, and recent observation of the challenging universal scaling connecting linear-$T$-dependent resistivity to the superconducting superfluid density.



قيم البحث

اقرأ أيضاً

Numerical simulations of strongly correlated electron systems suffer from the notorious fermion sign problem which has prevented progress in understanding if systems like the Hubbard model display high-temperature superconductivity. Here we show how the fermion sign problem can be solved completely with meron-cluster methods in a large class of models of strongly correlated electron systems, some of which are in the extended Hubbard model family and show s-wave superconductivity. In these models we also find that on-site repulsion can even coexist with a weak chemical potential without introducing sign problems. We argue that since these models can be simulated efficiently using cluster algorithms they are ideal for studying many of the interesting phenomena in strongly correlated electron systems.
Thermoelectric power ($S$) and Hall effect ($R_mathrm{H}$) measurements on the paramagnetic superconductor UTe$_2$ with magnetic field applied along the hard magnetization $b$-axis are reported. The first order nature of the metamagnetic transition a t $H_mathrm{m}=H^b_mathrm{c2}=35$~T leads to drastic consequences on $S$ and $R_mathrm{H}$. In contrast to the field dependence of the specific heat in the normal state through $H_mathrm{m}$, $S(H)$ is not symmetric with respect to $H_mathrm{m}$. This implies a strong interplay between ferromagnetic (FM) fluctuations and a Fermi-surface reconstruction at $H_mathrm{m}$. $R_mathrm{H}$ is very well described by incoherent skew scattering above the coherence temperature $T_mathrm{m}$ corresponding roughly to the temperature of the maximum in the susceptibility $T_{chi_mathrm{max}}$ and coherent skew scattering at lower temperatures. The discontinuous field dependence of both, $S(H)$ and the ordinary Hall coefficient $R_0$, at $H_mathrm{m}$ and at low temperature, provides evidence of a change in the band structure at the Fermi level.
We study the attractive Hubbard model with spin imbalance on two lattices featuring a flat band: the Lieb and kagome lattices. We present mean-field phase diagrams featuring exotic superfluid phases, similar to the Fulde-Ferrell-Larkin-Ovchinnikov (F FLO) state, whose stability is confirmed by dynamical mean-field theory (DMFT). The nature of the pairing is found to be richer than just the Fermi surface shift responsible for the usual FFLO state. The presence of a flat band allows for changes in the particle momentum distributions at null energy cost. This facilitates formation of nontrivial superfluid phases via multiband Cooper pair formation: the momentum distribution of the spin component in the flat band deforms to mimic the Fermi surface of the other spin component residing in a dispersive band. The Fermi surface of the unpaired particles that are typical for gapless superfluids becomes deformed as well. The results highlight the profound effect of flat dispersions on Fermi surface instabilities, and provide a potential route for observing spin-imbalanced superfluidity and superconductivity.
239 - B. Sriram Shastry 2012
We present the detailed formalism of the extremely correlated Fermi liquid theory, developed for treating the physics of the t-J model. We start from the exact Schwinger equation of motion for the Greens function for projected electrons, and develop a systematic expansion in a parameter lambda, relating to the double occupancy. The resulting Greens function has a canonical part arising from an effective Hamiltonian of the auxiliary electrons, and a caparison part, playing the role of a frequency dependent adaptive spectral weight. This adaptive weight balances the requirement at low omega, of the invariance of the Fermi volume, and at high omega, of decaying as c_0/(i omega), with a correlation depleted c_0 <1. The effective Hamiltonian H_{eff} describing the auxiliary Fermions is given a natural interpretation with an effective interaction V_{eff} containing both the exchange J(ij), and the hopping parameters t(ij). It is made Hermitian by adding suitable terms that ultimately vanish, in the symmetrized theory developed in this paper. Simple but important shift invariances of the t-J model are noted with respect to translating its parameters uniformly. These play a crucial role in constraining the form of V_{eff} and also provide checks for further approximations. The auxiliary and physical Greens function satisfy two sum rules, and the Lagrange multipliers for these are identified. A complete set of expressions for the Greens functions to second order in lambda is given, satisfying various invariances. A systematic iterative procedure for higher order approximations is detailed. A superconducting instability of the theory is noted at the simplest level with a high transition temperature.
We present a re-examination of the electronic structure and Fermi Surface (FS) of Bi-Sr-Ca-Cu-O (BSCCO) as obtained from angle-resolved photoemission experiments. By applying a stricter set of FS crossing criteria as well as by varying the incident p hoton energy outside the usual range, we have found very different behavior from that previously observed. In particular we have found an electron-like FS centered around the Gamma point, and the flat bands at E_F near the M point of the zone are absent. These results are robust over a large range of dopings and from single to double layer samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا