ﻻ يوجد ملخص باللغة العربية
Vortex-carrying matter waves, such as chiral electron beams, are of significant interest in both applied and fundamental science. Continuous wave electron vortex beams are commonly prepared via passive phase masks imprinting a transverse phase modulation on the electrons wave function. Here, we show that femtosecond chiral plasmonic near fields enable the generation and dynamic control on the ultrafast timescale of an electron vortex beam. The vortex structure of the resulting electron wavepacket is probed in both real and reciprocal space using ultrafast transmission electron microscopy. This method offers a high degree of scalability to small length scales and a highly efficient manipulation of the electron vorticity with attosecond precision. Besides the direct implications in the investigation of nanoscale ultrafast processes in which chirality plays a major role, we further discuss the perspectives of using this technique to shape the wave function of charged composite particles, such as protons, and how it can be used to probe their internal structure.
Topological photonics has revolutionized our understanding of light propagation, but most of current studies are focused on designing a static photonic structure. Developing a dynamic photonic topological platform to switch multiple topological funct
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic con
A new method to generate and control the amplitude and phase distributions of a optical vortex beam is proposed. By introducing a holographic grating on top of the dielectric waveguide, the free space vortex beam and the in-plane guiding wave can be
We theoretically and experimentally studied a novel class of vortex beams named open vortex beams (OVBs). Such beams are generated using Gaussian beams diffracted by partially blocked fork-shaped gratings (PB-FSGs).The analytical model of OVBs in the
In this article, a chiral plasmonic hydrogen-sensing platform using palladium-based nanohelices is demonstrated. Such 3D chiral nanostructures fabricated by nanoglancing angle deposition exhibit strong circular dichroism both experimentally and theor