ﻻ يوجد ملخص باللغة العربية
We report on a nanoscale quantum-sensing protocol which tracks a free precession of a single nuclear spin and is capable of estimating an azimuthal angle---a parameter which standard multipulse protocols cannot determine---of the target nucleus. Our protocol combines pulsed dynamic nuclear polarization, a phase-controlled radiofrequency pulse, and a multipulse AC sensing sequence with a modified readout pulse. Using a single nitrogen-vacancy center as a solid-state quantum sensor, we experimentally demonstrate this protocol on a single 13C nuclear spin in diamond and uniquely determine the lattice site of the target nucleus. Our result paves the way for magnetic resonance imaging at the single-molecular level.
Nuclear magnetic resonance (NMR) is a powerful method for determining the structure of molecules and proteins. While conventional NMR requires averaging over large ensembles, recent progress with single-spin quantum sensors has created the prospect o
Robust, high-fidelity readout is central to quantum device performance. Overcoming poor readout is an increasingly urgent challenge for devices based on solid-state spin defects, particularly given their rapid adoption in quantum sensing, quantum inf
The efficient single photon emission capabilities of quantum dot molecules position them as promising platforms for quantum information processing. Furthermore, quantum dot molecules feature a decoherence-free subspace that enables spin qubits with l
Solid-state nuclear spins surrounding individual, optically addressable qubits provide a crucial resource for quantum networks, computation and simulation. While hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence,
Quantum sensors based on spin defect ensembles have seen rapid development in recent years, with a wide array of target applications. Historically, these sensors have used optical methods to prepare or read out quantum states. However, these methods