ﻻ يوجد ملخص باللغة العربية
We study the problem of high-dimensional linear regression in a robust model where an $epsilon$-fraction of the samples can be adversarially corrupted. We focus on the fundamental setting where the covariates of the uncorrupted samples are drawn from a Gaussian distribution $mathcal{N}(0, Sigma)$ on $mathbb{R}^d$. We give nearly tight upper bounds and computational lower bounds for this problem. Specifically, our main contributions are as follows: For the case that the covariance matrix is known to be the identity, we give a sample near-optimal and computationally efficient algorithm that outputs a candidate hypothesis vector $widehat{beta}$ which approximates the unknown regression vector $beta$ within $ell_2$-norm $O(epsilon log(1/epsilon) sigma)$, where $sigma$ is the standard deviation of the random observation noise. An error of $Omega (epsilon sigma)$ is information-theoretically necessary, even with infinite sample size. Prior work gave an algorithm for this problem with sample complexity $tilde{Omega}(d^2/epsilon^2)$ whose error guarantee scales with the $ell_2$-norm of $beta$. For the case of unknown covariance, we show that we can efficiently achieve the same error guarantee as in the known covariance case using an additional $tilde{O}(d^2/epsilon^2)$ unlabeled examples. On the other hand, an error of $O(epsilon sigma)$ can be information-theoretically attained with $O(d/epsilon^2)$ samples. We prove a Statistical Query (SQ) lower bound providing evidence that this quadratic tradeoff in the sample size is inherent. More specifically, we show that any polynomial time SQ learning algorithm for robust linear regression (in Hubers contamination model) with estimation complexity $O(d^{2-c})$, where $c>0$ is an arbitrarily small constant, must incur an error of $Omega(sqrt{epsilon} sigma)$.
We give the first polynomial-time algorithm for performing linear or polynomial regression resilient to adversarial corruptions in both examples and labels. Given a sufficiently large (polynomial-size) training set drawn i.i.d. from distribution D
In this work, we initiate a formal study of probably approximately correct (PAC) learning under evasion attacks, where the adversarys goal is to emph{misclassify} the adversarially perturbed sample point $widetilde{x}$, i.e., $h(widetilde{x}) eq c(wi
Brand~ao and Svore very recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension $n$ of the problem and the number $m$ of
Bilevel optimization has recently attracted growing interests due to its wide applications in modern machine learning problems. Although recent studies have characterized the convergence rate for several such popular algorithms, it is still unclear h
We prove that any two-pass graph streaming algorithm for the $s$-$t$ reachability problem in $n$-vertex directed graphs requires near-quadratic space of $n^{2-o(1)}$ bits. As a corollary, we also obtain near-quadratic space lower bounds for several o