ترغب بنشر مسار تعليمي؟ اضغط هنا

Variation of photoluminescence spectral line shape of monolayer WS2

76   0   0.0 ( 0 )
 نشر من قبل Yongjae Kwon
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of the variation of photoluminescence (PL) spectra of monolayer tungsten disulfide (WS2) is investigated systematically. Dependence of the PL spectrum on the excitation power show that the relatively sharp component corresponds to excitons whereas the broader component at slightly lower energy corresponds to negatively charged trions. PL imaging and second harmonic generation measurements show that the trion signals are suppressed more than the exciton signals near the edges, thereby relatively enhancing the excitonic feature in the PL spectrum and that such relative enhancement of the exciton signals is more pronounced near approximately armchair edges. This effect is interpreted in terms of depletion of free electrons near the edges caused by structural defects and adsorption of electron acceptors such as oxygen atoms.



قيم البحث

اقرأ أيضاً

The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach toward measuring the exciton binding energy of monolayer WS2 with linear differential transmissio n spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71eV around K valley in the Brillouin zone. The trion binding energy of 34meV, two-photon absorption cross section 4X10^{4}cm^{2}W^{-2}S^{-1} at 780nm and exciton-exciton annihilation rate around 0.5cm^{2}/s are experimentally obtained.
We report on preparation dependent properties observed in monolayer WS2 samples synthesized via chemical vapor deposition (CVD) on a variety of common substrates (Si/SiO2, sapphire, fused silica) as well as samples that were transferred from the grow th substrate onto a new substrate. The as-grown CVD materials (as-WS2) exhibit distinctly different optical properties than transferred WS2 (x-WS2). In the case of CVD growth on Si/SiO2, following transfer to fresh Si/SiO2 there is a ~50 meV shift of the ground state exciton to higher emission energy in both photoluminescence emission and optical reflection. This shift is indicative of a reduction in tensile strain by ~0.25%. Additionally, the excitonic state in x-WS2 is easily modulated between neutral and charged exciton by exposure to moderate laser power, while such optical control is absent in as-WS2 for all growth substrates investigated. Finally, we observe dramatically different laser power-dependent behavior for as-grown and transferred WS2. These results demonstrate a strong sensitivity to sample preparation that is important for both a fundamental understanding of these novel materials as well as reliable reproduction of device properties.
We demonstrate that the temperature and doping dependencies of the photoluminescence (PL) spectra of a doped MoS2 monolayer have several peculiar characteristics defined by trion radiative decay. While only zero-momentum exciton states are coupled to light, radiative recombination of non-zero momentum trions is also allowed. This leads to an asymmetric broadening of the trion spectral peak and redshift of the emitted light with increasing temperature. The lowest energy trion state is dark, which is manifested by the sharply non-monotonic temperature dependence of the PL intensity. Our calculations combine the Dirac model for the single-particle states, the parameters for which are obtained from the first principle calculations, and the direct solution of the three-particle problem within the Tamm-Dancoff approximation. The numerical results are well captured by a simple model that yields analytical expressions for the temperature dependencies of the PL spectra.
We report a rare atom-like interaction between excitons in monolayer WS2, measured using ultrafast absorption spectroscopy. At increasing excitation density, the exciton resonance energy exhibits a pronounced redshift followed by an anomalous blueshi ft. Using both material-realistic computation and phenomenological modeling, we attribute this observation to plasma effects and an attraction-repulsion crossover of the exciton-exciton interaction that mimics the Lennard-Jones potential between atoms. Our experiment demonstrates a strong analogy between excitons and atoms with respect to inter-particle interaction, which holds promise to pursue the predicted liquid and crystalline phases of excitons in two-dimensional materials.
Coherent optical dressing of quantum materials offers technological advantages to control their electronic properties, such as the electronic valley degree of freedom in monolayer transition metal dichalcogenides (TMDs). Here, we observe a new type o f optical Stark effect in monolayer WS2, one that is mediated by intervalley biexcitons under the blue-detuned driving with circularly polarized light. We found that such helical optical driving not only induces an exciton energy downshift at the excitation valley, but also causes an anomalous energy upshift at the opposite valley, which is normally forbidden by the exciton selection rules but now made accessible through the intervalley biexcitons. These findings reveal the critical, but hitherto neglected, role of biexcitons to couple the two seemingly independent valleys, and to enhance the optical control in valleytronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا