ﻻ يوجد ملخص باللغة العربية
Motivated by the recent result of XENON1T collaboration with full exposure, 279 life days, that sets the most stringent limit on the spin-independent dark matter-nucleon scattering cross section we discuss a dark $E_6$-inspired model that features the presence of a $U(1)_{d-u}$ gauge symmetry. The dark matter candidate is a Dirac fermion that interacts with Standard Model fermions via a massive Z that preserves the quantum number assignments of this symmetry. We compute the spin-independent scattering cross section off xenon nucleus and compare with the XENON1T limit; find the LHC bound on the Z mass as well as the projection sensitivity of high-energy and luminosity LHC; and derive the Fermi-LAT bounds on the dark matter annihilation cross section based on the observation of gamma-rays in the direction of Dwarf Spheroidal galaxies. We exploit the complementarity between these datasets to conclude that the new bound from XENON1T severely constrain the model, which combined with the LHC upgrade sensitivity rules out this WIMP realization setup below 5 TeV.
We investigate dark matter in a constrained $E_6$ inspired supersymmetric model with an exact custodial symmetry and compare with the CMSSM. The breakdown of $E_6$ leads to an additional $U(1)_N$ symmetry and a discrete matter parity. The custodial a
We explore the relic density of dark matter and the particle spectrum within a constrained version of an $E_6$ inspired SUSY model with an extra $U(1)_N$ gauge symmetry. In this model a single exact custodial symmetry forbids tree-level flavor-changi
The breakdown of SU(6) global symmetry down to its SU(5) subgroup near the scale f > 10 TeV in the strongly interacting sector within the E_6 inspired composite Higgs model (E6CHM) gives rise to a set of pseudo-Nambu-Goldstone bosons (pNGBs) that inv
We propose an attractive model that excess of electron recoil events around 1-5 keV reported by the XENON1T collaboration nicely links to the tiny neutrino masses based on a radiative seesaw scenario. Our dark matter(DM) is an isospin singlet inert b
We have witnessed the beginning of an era where dark matter and neutrino detectors can probe similar new physics phenomena. Motivated by the low-energy electron recoil spectrum observed by the dark matter experiment, XENON1T, at Gran Sasso laboratory