ترغب بنشر مسار تعليمي؟ اضغط هنا

Short-term Load Forecasting with Deep Residual Networks

124   0   0.0 ( 0 )
 نشر من قبل Kunjin Chen
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We present in this paper a model for forecasting short-term power loads based on deep residual networks. The proposed model is able to integrate domain knowledge and researchers understanding of the task by virtue of different neural network building blocks. Specifically, a modified deep residual network is formulated to improve the forecast results. Further, a two-stage ensemble strategy is used to enhance the generalization capability of the proposed model. We also apply the proposed model to probabilistic load forecasting using Monte Carlo dropout. Three public datasets are used to prove the effectiveness of the proposed model. Multiple test cases and comparison with existing models show that the proposed model is able to provide accurate load forecasting results and has high generalization capability.



قيم البحث

اقرأ أيضاً

Short-term forecasting is an important tool in understanding environmental processes. In this paper, we incorporate machine learning algorithms into a conditional distribution estimator for the purposes of forecasting tropical cyclone intensity. Many machine learning techniques give a single-point prediction of the conditional distribution of the target variable, which does not give a full accounting of the prediction variability. Conditional distribution estimation can provide extra insight on predicted response behavior, which could influence decision-making and policy. We propose a technique that simultaneously estimates the entire conditional distribution and flexibly allows for machine learning techniques to be incorporated. A smooth model is fit over both the target variable and covariates, and a logistic transformation is applied on the model output layer to produce an expression of the conditional density function. We provide two examples of machine learning models that can be used, polynomial regression and deep learning models. To achieve computational efficiency we propose a case-control sampling approximation to the conditional distribution. A simulation study for four different data distributions highlights the effectiveness of our method compared to other machine learning-based conditional distribution estimation techniques. We then demonstrate the utility of our approach for forecasting purposes using tropical cyclone data from the Atlantic Seaboard. This paper gives a proof of concept for the promise of our method, further computational developments can fully unlock its insights in more complex forecasting and other applications.
Accurate short-term load forecasting is essential for efficient operation of the power sector. Predicting load at a fine granularity such as individual households or buildings is challenging due to higher volatility and uncertainty in the load. In ag gregate loads such as at grids level, the inherent stochasticity and fluctuations are averaged-out, the problem becomes substantially easier. We propose an approach for short-term load forecasting at individual consumers (households) level, called Forecasting using Matrix Factorization (FMF). FMF does not use any consumers demographic or activity patterns information. Therefore, it can be applied to any locality with the readily available smart meters and weather data. We perform extensive experiments on three benchmark datasets and demonstrate that FMF significantly outperforms the computationally expensive state-of-the-art methods for this problem. We achieve up to 26.5% and 24.4 % improvement in RMSE over Regression Tree and Support Vector Machine, respectively and up to 36% and 73.2% improvement in MAPE over Random Forest and Long Short-Term Memory neural network, respectively.
Appliance-level load forecasting plays a critical role in residential energy management, besides having significant importance for ancillary services performed by the utilities. In this paper, we propose to use an LSTM-based sequence-to-sequence (seq 2seq) learning model that can capture the load profiles of appliances. We use a real dataset collected fromfour residential buildings and compare our proposed schemewith three other techniques, namely VARMA, Dilated One Dimensional Convolutional Neural Network, and an LSTM model.The results show that the proposed LSTM-based seq2seq model outperforms other techniques in terms of prediction error in most cases.
104 - Yayu Peng , Yishen Wang , Xiao Lu 2019
Short-term load forecasting (STLF) is essential for the reliable and economic operation of power systems. Though many STLF methods were proposed over the past decades, most of them focused on loads at high aggregation levels only. Thus, low-aggregati on load forecast still requires further research and development. Compared with the substation or city level loads, individual loads are typically more volatile and much more challenging to forecast. To further address this issue, this paper first discusses the characteristics of small-and-medium enterprise (SME) and residential loads at different aggregation levels and quantifies their predictability with approximate entropy. Various STLF techniques, from the conventional linear regression to state-of-the-art deep learning, are implemented for a detailed comparative analysis to verify the forecasting performances as well as the predictability using an Irish smart meter dataset. In addition, the paper also investigates how using data processing improves individual-level residential load forecasting with low predictability. Effectiveness of the discussed method is validated with numerical results.
Forecasting the particulate matter (PM) concentration in South Korea has become urgently necessary owing to its strong negative impact on human life. In most statistical or machine learning methods, independent and identically distributed data, for e xample, a Gaussian distribution, are assumed; however, time series such as air pollution and weather data do not meet this assumption. In this study, the maximum correntropy criterion for regression (MCCR) loss is used in an analysis of the statistical characteristics of air pollution and weather data. Rigorous seasonality adjustment of the air pollution and weather data was performed because of their complex seasonality patterns and the heavy-tailed distribution of data even after deseasonalization. The MCCR loss was applied to multiple models including conventional statistical models and state-of-the-art machine learning models. The results show that the MCCR loss is more appropriate than the conventional mean squared error loss for forecasting extreme values.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا