ﻻ يوجد ملخص باللغة العربية
Hydrogen exhibits qualitatively different charge states depending on the host material, as nicely explained by the state-of-the-art impurity-state calculation. Motivated by a recent experiment [Nature 546, 124 (2017)], we show that the complex oxide SrCoO$_{2.5}$ represents an interesting example, in which the interstitial H appears as a deep-level center according to the commonly-used transition level calculation, but no bound electron can be found around the impurity. Via a combination of charge difference analysis, density of states projection and constraint magnetization calculation, it turns out that the H-doped electron is spontaneously trapped by a nonunique Co ion and is fully spin-polarized by the onsite Hunds rule coupling. Consequently, the doped system remains insulating, whereas the antiferromagnetic exchange is slightly perturbed locally.
We use high-resolution, tunable angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic properties of single crystals of MnBi2Te4, a material that was predicted to be the first intrin
It was recently reported that a continuous electric current is a powerful control parameter to trigger changes in the electronic structure and metal-insulator transitions (MITs) in Ca2RuO4. However, the spatial evolution of the MIT and the implicatio
The vanadates VO$_2$ and V$_2$O$_3$ are prototypical examples of strongly correlated materials that exhibit a metal-insulator transition. While the phase transitions in these materials have been studied extensively, there is a limited understanding o
The electronic structure of interstitial hydrogen in a compound semiconductor FeS$_2$ (naturally $n$-type) is inferred from a muon study. An implanted muon (Mu, a pseudo-hydrogen) forms electronically different defect centers discerned by the hyperfi
Magnetic topological insulators (TI) provide an important material platform to explore quantum phenomena such as quantized anomalous Hall (QAH) effect and Majorana modes, etc. Their successful material realization is thus essential for our fundamenta