ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence of spherical averages for actions of Fuchsian Groups

112   0   0.0 ( 0 )
 نشر من قبل Alexey Klimenko
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Pointwise convergence of spherical averages is proved for a measure-preserving action of a Fuchsian group. The proof is based on a new variant of the Bowen-Series symbolic coding for Fuchsian groups that, developing a method introduced by Wroten, simultaneously encodes all possible shortest paths representing a given group element. The resulting coding is self-inverse, giving a reversible Markov chain to which methods previously introduced by the first author for the case of free groups may be applied.



قيم البحث

اقرأ أيضاً

In this paper, we shall introduce $h$-expansiveness and asymptotical $h$-expansiveness for actions of sofic groups. By the definitions, each $h$-expansive action of sofic groups is asymptotically $h$-expansive. We show that each expansive action of s ofic groups is $h$-expansive, and, for any given asymptotically $h$-expansive action of sofic groups, the entropy function (with respect to measures) is upper semi-continuous and hence the system admits a measure with maximal entropy. Observe that asymptotically $h$-expansive property was firstly introduced and studied by Misiurewicz for $mathbb{Z}$-actions using the language of topological conditional entropy. And thus in the remaining part of the paper, we shall compare our definitions of weak expansiveness for actions of sofic groups with the definitions given in the same spirit of Misiurewiczs ideas when the group is amenable. It turns out that these two definitions are equivalent in this setting.
Let $BS(1,n) =< a, b | aba^{-1} = b^n >$ be the solvable Baumslag-Solitar group, where $ ngeq 2$. It is known that BS(1,n) is isomorphic to the group generated by the two affine maps of the real line: $f_0(x) = x + 1$ and $h_0(x) = nx $. This pap er deals with the dynamics of actions of BS(1,n) on closed orientable surfaces. We exhibit a smooth BS(1,n) action without finite orbits on $TT ^2$, we study the dynamical behavior of it and of its $C^1$-pertubations and we prove that it is not locally rigid. We develop a general dynamical study for faithful topological BS(1,n)-actions on closed surfaces $S$. We prove that such actions $<f,h | h circ f circ h^{-1} = f^n>$ admit a minimal set included in $fix(f)$, the set of fixed points of $f$, provided that $fix(f)$ is not empty. When $S= TT^2$, we show that there exists a positive integer $N$, such that $fix(f^N)$ is non-empty and contains a minimal set of the action. As a corollary, we get that there are no minimal faithful topological actions of BS(1,n) on $TT^2$. When the surface $S$ has genus at least 2, is closed and orientable, and $f$ is isotopic to identity, then $fix(f)$ is non empty and contains a minimal set of the action. Moreover if the action is $C^1$ then $fix(f)$ contains any minimal set.
81 - Olga Lukina 2018
In this paper, we study the actions of profinite groups on Cantor sets which arise from representations of Galois groups of certain fields of rational functions. Such representations are associated to polynomials, and they are called profinite iterat ed monodromy groups. We are interested in a topological invariant of such actions called the asymptotic discriminant. In particular, we give a complete classification by whether the asymptotic discriminant is stable or wild in the case when the polynomial generating the representation is quadratic. We also study different ways in which a wild asymptotic discriminant can arise.
119 - Morris W. Hirsch 2014
Let $G$ be connected nilpotent Lie group acting locally on a real surface $M$. Let $varphi$ be the local flow on $M$ induced by a $1$-parameter subgroup. Assume $K$ is a compact set of fixed points of $varphi$ and $U$ is a neighborhood of $K$ contain ing no other fixed points. Theorem: If the Dold fixed-point index of $varphi_t|U$ is nonzero for sufficiently small $t>0$, then ${rm Fix} (G) cap K e emptyset$.
Let $BS(1, n)=< a, b | aba^{-1} = b^n >$ be the solvable Baumslag-Solitar group, where $ ngeq 2$. It is known that B(1, n) is isomorphic to the group generated by the two affine maps of the line : $f_0(x) = x + 1$ and $h_0(x) = nx $. The action on $S ^1 = RR cup {infty}$ generated by these two affine maps $f_0$ and $h_0 $ is called the standard affine one. We prove that any representation of BS(1,n) into $Diff^1(S^1)$ is (up to a finite index subgroup) semiconjugated to the standard affine action.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا