ترغب بنشر مسار تعليمي؟ اضغط هنا

OSSOS. VII. 800+ trans-Neptunian objects - the complete data release

93   0   0.0 ( 0 )
 نشر من قبل Michele T. Bannister
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Outer Solar System Origins Survey (OSSOS), a wide-field imaging program in 2013-2017 with the Canada-France-Hawaii Telescope, surveyed 155 deg$^{2}$ of sky to depths of $m_r = 24.1$-25.2. We present 838 outer Solar System discoveries that are entirely free of ephemeris bias. This increases the inventory of trans-Neptunian objects (TNOs) with accurately known orbits by nearly 50%. Each minor planet has 20-60 Gaia/Pan-STARRS-calibrated astrometric measurements made over 2-5 oppositions, which allows accurate classification of their orbits within the trans-Neptunian dynamical populations. The populations orbiting in mean-motion resonance with Neptune are key to understanding Neptunes early migration. Our 313 resonant TNOs, including 132 plutinos, triple the available characterized sample and include new occupancy of distant resonances out to semi-major axis $a sim 130$ au. OSSOS doubles the known population of the non-resonant Kuiper belt, providing 436 TNOs in this region, all with exceptionally high-quality orbits of $a$ uncertainty $sigma_{a} leq 0.1%$; they show the belt exists from $a gtrsim 37$ au, with a lower perihelion bound of $35$ au. We confirm the presence of a concentrated low-inclination $asimeq 44$ au kernel population and a dynamically cold population extending beyond the 2:1 resonance. We finely quantify the surveys observational biases. Our survey simulator provides a straightforward way to impose these biases on models of the trans-Neptunian orbit distributions, allowing statistical comparison to the discoveries. The OSSOS TNOs, unprecedented in their orbital precision for the size of the sample, are ideal for testing concepts of the history of giant planet migration in the Solar System.



قيم البحث

اقرأ أيضاً

We present variability measurements and partial light curves of Trans-Neptunian Objects (TNOs) from a two-night pilot study using Hyper Suprime-Cam (HSC) on the Subaru Telescope (Maunakea, Hawaii, USA). Subarus large aperture (8-m) and HSCs large fie ld of view (1.77 square degrees) allow us to obtain measurements of multiple objects with a range of magnitudes in each telescope pointing. We observed 65 objects with m_r = 22.6--25.5 mag in just six pointings, allowing 20--24 visits of each pointing over the two nights. Our sample, all discovered in the recent Outer Solar System Origins Survey (OSSOS), span absolute magnitudes H_r = 6.2--10.8 mag and thus investigates smaller objects than previous light curve projects have typically studied. Our data supports the existence of a correlation between light curve amplitude and absolute magnitude seen in other works, but does not support a correlation between amplitude and orbital inclination. Our sample includes a number of objects from different dynamical populations within the trans-Neptunian region, but we do not find any relationship between variability and dynamical class. We were only able to estimate periods for 12 objects in the sample and found that a longer baseline of observations is required for reliable period analysis. We find that 31 objects (just under half of our sample) have variability greater than 0.4 magnitudes during all of the observations; in smaller 1.25 hr, 1.85 hr and 2.45 hr windows, the median variability is 0.13, 0.16 and 0.19 mags, respectively. The fact that variability on this scale is common for small TNOs has important implications for discovery surveys (such as OSSOS or the Large Synoptic Survey Telescope) and color measurements.
The thermal emission of transneptunian objects (TNO) and Centaurs has been observed at mid- and far-infrared wavelengths - with the biggest contributions coming from the Spitzer and Herschel space observatories-, and the brightest ones also at sub-mi llimeter and millimeter wavelengths. These measurements allowed to determine the sizes and albedos for almost 180 objects, and densities for about 25 multiple systems. The derived very low thermal inertias show evidence for a decrease at large heliocentric distances and for high-albedo objects, which indicates porous and low-conductivity surfaces. The radio emissivity was found to be low ($epsilon_r$=0.70$pm$0.13) with possible spectral variations in a few cases. The general increase of density with object size points to different formation locations or times. The mean albedos increase from about 5-6% (Centaurs, Scattered-Disk Objects) to 15% for the Detached objects, with distinct cumulative albedo distributions for hot and cold classicals. The color-albedo separation in our sample is evidence for a compositional discontinuity in the young Solar System. The median albedo of the sample (excluding dwarf planets and the Haumea family) is 0.08, the albedo of Haumea family members is close to 0.5, best explained by the presence of water ice. The existing thermal measurements remain a treasure trove at times where the far-infrared regime is observationally not accessible.
Since 2013, dense and narrow rings are known around the small Centaur object Chariklo and the dwarf planet Haumea. Dense material has also been detected around the Centaur Chiron, although its nature is debated. This is the first time ever that rings are observed elsewhere than around the giant planets, suggesting that those features are more common than previously thought. The origins of those rings remain unclear. In particular, it is not known if the same generic process can explain the presence of material around Chariklo, Chiron, Haumea, or if each object has a very different history. Nonetheless, a specific aspect of small bodies is that they may possess a non-axisymmetric shape (topographic features and or elongation) that are essentially absent in giant planets. This creates strong resonances between the spin rate of the object and the mean motion of ring particles. In particular, Lindblad-type resonances tend to clear the region around the corotation (or synchronous) orbit, where the particles orbital period matches that of the body. Whatever the origin of the ring is, modest topographic features or elongations of Chariklo and Haumea explain why their rings should be found beyond the outermost 1/2 resonance, where the particles complete one revolution while the body completes two rotations. Comparison of the resonant locations relative to the Roche limit of the body shows that fast rotators are favored for being surrounded by rings. We discuss in more details the phase portraits of the 1/2 and 1/3 resonances, and the consequences of a ring presence on satellite formation.
Context: Accurate measurements of diameters of trans-Neptunian objects are extremely complicated to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters an d geometric albedos. The absolute magnitude, Hv, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, yet not many are known. Aims: Our objective is to measure accurate V band absolute magnitudes and phase coefficients for a sample of trans-Neptunian objects, many of which have been observed, and modeled, within the TNOs are cool program, one of Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. Results: We obtained 237 new magnitudes for the 56 objects, six of them with no reported previous measurements. Including the data from the literature we report a total of 110 absolute magnitudes with their respective phase coefficients. The average value of Hv is 6.39, bracketed by a minimum of 14.60 and a maximum of -1.12. In the case of the phase coefficients we report 0.10 mag per degree as the median value and a very large dispersion, ranging from -0.88 up tp 1.35 mag per degree.
Looking at the orbits of small bodies with large semimajor axes, we are compelled to see patterns. Some of these patterns are noted as strong indicators of new or hidden processes in the outer Solar System, others are substantially generated by obser vational biases, and still others may be completely overlooked. We can gain insight into the current and past structure of the outer Solar System through a careful examination of these orbit patterns. In this chapter, we discuss the implications of the observed orbital distribution of distant trans-Neptunian objects (TNOs). We start with some cautions on how observational biases must affect the known set of TNO orbits. Some of these biases are intrinsic to the process of discovering TNOs, while others can be reduced or eliminated through careful observational survey design. We discuss some orbital element correlations that have received considerable attention in the recent literature. We examine the known TNOs in the context of the gravitational processes that the known Solar System induces in orbital distributions. We discuss proposed new elements of the outer Solar System, posited ancient processes, and the types of TNO orbital element distributions that they predict to exist. We conclude with speculation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا