Computing is not understanding. This is exemplified by the multiple and discordant interpretations of Landau damping still present after seventy years. For long deemed impossible, the mechanical N-body description of this damping, not only enables its rigorous and simple calculation, but makes unequivocal and intuitive its interpretation as the synchronization of almost resonant passing particles. This synchronization justifies mechanically why a single formula applies to both Landau growth and damping. As to the electrostatic potential, the phase mixing of many beam modes produces Landau damping, but it is unexpectedly essential for Landau growth too. Moreover, collisions play an essential role in collisionless plasmas. In particular, Debye shielding results from a cooperative dynamical self-organization process, where collisional deflections due to a given electron diminish the apparent number of charges about it. The finite value of exponentiation rates due to collisions is crucial for the equivalent of the van Kampen phase mixing to occur in the N-body system. The N-body approach incorporates spontaneous emission naturally, whose compound effect with Landau damping drives a thermalization of Langmuir waves. ONeils damping with trapping typical of initially large enough Langmuir waves results from a phase transition. As to collisional transport, there is a smooth connection between impact parameters where the two-body Rutherford picture is correct, and those where a collective description is mandatory. The N-body approach reveals two important features of the Vlasovian limit: it is singular and it corresponds to a renormalized description of the actual N-body dynamics.