ﻻ يوجد ملخص باللغة العربية
We reassess the $Btopiell u_{ell}$ differential branching ratio distribution experimental data released by the BaBar and Belle Collaborations supplemented with all lattice calculations of the $Btopi$ form factor shape available up to date obtained by the HPQCD, FNAL/MILC and RBC/UKQCD Collaborations. Our study is based on the method of Pad{e} approximants, and includes a detailed scrutiny of each individual data set that allow us to obtain $|V_{ub}|=3.53(8)_{rm{stat}}(6)_{rm{syst}}times10^{-3}$. The semileptonic $B^{+}toeta^{(prime)}ell^{+} u_{ell}$ decays are also addressed and the $eta$-$eta^{prime}$ mixing discussed.
This article analyses the available inputs in $btopilnu$ and $btorholnu$ decays which include the measured values of differential rate in different $q^2$-bins (lepton invariant mass spectrum), lattice, and the newly available inputs on the relevant f
We discuss the general properties of the amplitude of the $Bto l^+l^-l u$ decays and calculate the related kinematical distributions $d^2Gamma/dq^2dq^2$, $q$ the momentum of the $l^+l^-$ pair emitted from the electromagnetic vertex and $q$ the moment
The branching fractions of the decays $B^{+} to eta ell^{+} u_{ell}$ and $B^{+} to eta^{prime} ell^{+} u_{ell}$ are measured, where $ell$ is either an electron or a muon, using a data sample of $711,{rm fb}^{-1}$ containing $772 times 10^6 Bbar{B}$
The first measurements of differential branching fractions of inclusive semileptonic ${B to X_u , ell^+, u_{ell}}$ decays are performed using the full Belle data set of 711 fb$^{-1}$ of integrated luminosity at the $Upsilon(4S)$ resonance and for $e
We employ a mathematical framework based on rational approximants in order to calculate meson form factors. The method profits from unitary, is systematic and data based, and is able to ascribe a systematic uncertainty which provides for the desired