ﻻ يوجد ملخص باللغة العربية
The recent measurement of the global 21-cm absorption signal reported by the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) Collaboration is in tension with the prediction of the $Lambda$CDM model at a $3.8,sigma$ significance level. In this work, we report that this tension can be released by introducing an interaction between dark matter and vacuum energy. We perform a model parameter estimation using a combined dataset including EDGES and other recent cosmological observations, and find that the EDGES measurement can marginally improve the constraint on parameters that quantify the interacting vacuum, and that the combined dataset favours the $Lambda$CDM at 68% CL. This proof-of-the-concept study demonstrates the potential power of future 21-cm experiments to constrain the interacting dark energy models.
The recent detection of an anomalously strong 21-cm signal of neutral hydrogen from Cosmic Dawn by the EDGES Low-Band radio experiment can be explained if cold dark matter particles scattered off the baryons draining excess energy from the gas. In th
The EDGES experiment recently announced evidence for a broad absorption feature in the sky-averaged radio spectrum around 78 MHz, as may result from absorption in the 21 cm line by neutral hydrogen at z~15-20. If confirmed, one implication is that th
Weakly interacting cold dark matter (CDM) particles, which are otherwise extremely successful in explaining various cosmological observations, exhibit a number of problems on small scales. One possible way of solving these problems is to invoke (so-c
The redshifted 21-cm signal of neutral Hydrogen is a promising probe into the period of evolution of our Universe when the first stars were formed (Cosmic Dawn), to the period where the entire Universe changed its state from being completely neutral
Using the global 21-cm signal measurement by the EDGES collaboration, we derive constraints on the fraction of the dark matter that is in the form of primordial black holes (PBHs) with masses in the range $10^{15}$-$10^{17},$g. Improving upon previou