ترغب بنشر مسار تعليمي؟ اضغط هنا

Holstein polaron in a valley-degenerate two-dimensional semiconductor

147   0   0.0 ( 0 )
 نشر من قبل Keun Su Kim
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) crystals have emerged as a class of materials with tuneable carrier density. Carrier doping to 2D semiconductors can be used to modulate manybody interactions and to explore novel composite particles. Holstein polaron is a small composite particle of an electron carrying a cloud of self-induced lattice deformation (or phonons), which has been proposed to play a key role in high-temperature superconductivity and carrier mobility in devices. Here, we report the discovery of Holstein polarons in a surface-doped layered semiconductor, MoS2, where a puzzling 2D superconducting dome with the critical temperature of 12 K was found recently. Using a high-resolution band mapping of charge carriers, we found strong band renormalizations collectively identified as a hitherto unobserved spectral function of Holstein polarons. The unexpected short-range nature of electron-phonon (e-ph) coupling in MoS2 can be explained by its valley degeneracy that enables strong intervalley coupling mediated by acoustic phonons. The coupling strength is found to gradually increase along the superconducting dome up to the intermediate regime, suggesting bipolaronic pairing in 2D superconductivity.



قيم البحث

اقرأ أيضاً

We present a theory of magnetic response in a finite-size two-dimensional superconductors with Rashba spin-orbit coupling. The interplay between the latter and an in-plane Zeeman field leads on the one hand to an out-of-plane spin polarization which accumulates at the edges of the sample over the superconducting coherence length, and on the other hand, to circulating supercurrents decaying away from the edge over a macroscopic scale. In a long finite stripe of width W both, the spin polarization and the currents, contribute to the total magnetic moment induced at the stripe ends. These two contributions scale with W and W2 respectively, such that for sufficiently large samples it can be detected by current magnetometry techniques.
The metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing upon cooling from a charge density wave state. The interplay between s uch phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based, and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature and origins have proved highly controversial. Here, we study a prototypical example, $2H$-NbSe$_2$, by spin- and angle-resolved photoemission and first-principles theory. We find that the normal state, from which its hallmark collective phases emerge, is characterised by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin-orbit interactions and local inversion symmetry breaking. Non-negligible interlayer coupling further drives a rich three-dimensional momentum-dependence of the underlying Fermi surface spin texture. Together, these findings necessitate a fundamental re-investigation of the nature of charge order and superconducting pairing in NbSe$_2$ and related TMDCs.
The existence of topological superconductors preserving time-reversal symmetry was recently predicted, and they are expected to provide a solid-state realization of itinerant massless Majorana fermions and a route to topological quantum computation. Their first concrete example, CuxBi2Se3, was discovered last year, but the search for new materials has so far been hindered by the lack of guiding principle. Here, we report point-contact spectroscopy experiments showing that the low-carrier-density superconductor Sn_{1-x}In_{x}Te is accompanied with surface Andreev bound states which, with the help of theoretical analysis, give evidence for odd-parity pairing and topological superconductivity. The present and previous finding of topological superconductivity in Sn_{1-x}In_{x}Te and CuxBi2Se3 demonstrates that odd-parity pairing favored by strong spin-orbit coupling is a common underlying mechanism for materializing topological superconductivity.
471 - Medini Padmanabhan , T. Gokmen , 2010
We study a two-dimensional electron system where the electrons occupy two conduction band valleys with anisotropic Fermi contours and strain-tunable occupation. We observe persistent quantum Hall states at filling factors $ u = 1/3$ and 5/3 even at z ero strain when the two valleys are degenerate. This is reminiscent of the quantum Hall ferromagnet formed at $ u = 1$ in the same system at zero strain. In the absence of a theory for a system with anisotropic valleys, we compare the energy gaps measured at $ u = 1/3$ and 5/3 to the available theory developed for single-valley, two-spin systems, and find that the gaps and their rates of rise with strain are much smaller than predicted.
Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals for topological superconductivity. Material science progress and robust signatures of Majorana zero modes in recent experiments are discussed. After a brief introduction to the subject, we outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation in these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا