ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Model Comparison and Analysis of the Galactic Disk Population of Gamma-Ray Millisecond Pulsars

70   0   0.0 ( 0 )
 نشر من قبل Richard Bartels
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulsed emission from almost one hundred millisecond pulsars (MSPs) has been detected in $gamma$-rays by the Fermi Large-Area Telescope. The global properties of this population remain relatively unconstrained despite many attempts to model their spatial and luminosity distributions. We perform here a self-consistent Bayesian analysis of both the spatial distribution and luminosity function simultaneously. Distance uncertainties, arising from errors in the parallax measurement or Galactic electron-density model, are marginalized over. We provide a public Python package for calculating distance uncertainties to pulsars derived using the dispersion measure by accounting for the uncertainties in Galactic electron-density model YMW16. Finally, we use multiple parameterizations for the MSP population and perform Bayesian model comparison, finding that a broken power law luminosity function with Lorimer spatial profile are preferred over multiple other parameterizations used in the past. The best-fit spatial distribution and number of $gamma$-ray MSPs is consistent with results for the radio population of MSPs.



قيم البحث

اقرأ أيضاً

The Fermi Large Area Telescope, in collaboration with several groups from the radio community, have had marvellous success at uncovering new gamma-ray millisecond pulsars (MSPs). In fact, MSPs now make up a sizable fraction of the total number of kno wn gamma-ray pulsars. The MSP population is characterized by a variety of pulse profile shapes, peak separations, and radio-to-gamma phase lags, with some members exhibiting nearly phase-aligned radio and gamma-ray light curves (LCs). The MSPs short spin periods underline the importance of including special relativistic effects in LC calculations, even for emission originating from near the stellar surface. We present results on modelling and classification of MSP LCs using standard pulsar model geometries.
The Galactic Center Excess (GCE) is an extended gamma-ray source in the central region of the Galaxy found in Fermi Large Area Telescope (Fermi-LAT) data. One of the leading explanations for the GCE is an unresolved population of millisecond pulsars (MSPs) in the Galactic bulge. Due to differing star formation histories it is expected that the MSPs in the Galactic bulge are older and therefore dimmer than those in the Galactic disk. Additionally, correlations between the spectral parameters of the MSPs and the spin-down rate of the corresponding neutron stars have been observed. This implies that the bulge MSPs may be spectrally different from the disk MSPs. We perform detailed modelling of the MSPs from formation until observation. Although we confirm the correlations, we do not find they are sufficiently large to significantly differentiate the spectra of the bulge MSPs and disk MSPs when the uncertainties are accounted for. Our results demonstrate that the population of MSPs that can explain the gamma-ray signal from the resolved MSPs in the Galactic disk and the unresolved MSPs in the boxy bulge and nuclear bulge can consistently be described as arising from a common evolutionary trajectory for some subset of astrophysical sources common to all these different environments. We do not require that there is anything unusual about inner Galaxy MSPs to explain the GCE. Additionally, we use a more accurate geometry for the distribution of bulge MSPs and incorporate dispersion measure estimates of the MSPs distances. We find that the elongated boxy bulge morphology means that some the bulge MSPs are closer to us and so easier to resolve. We identify three resolved MSPs that have significant probabilities of belonging to the bulge population.
If the mysterious Fermi-LAT GeV gamma-ray excess is due to an unresolved population of millisecond pulsars (MSP) in the Galactic bulge, one expects this very same population to shine in X rays. For the first time, we address the question of what is t he sensitivity of current X-ray telescopes to an MSP population in the Galactic bulge. To this end, we create a synthetic population of Galactic MSPs, building on an empirical connection between gamma- and X-ray MSP emission based on observed source properties. We compare our model with compact sources in the latest Chandra source catalog, applying selections based on spectral observables and optical astrometry with Gaia. We find a significant number of Chandra sources in the region of interest to be consistent with being bulge MSPs that are as yet unidentified. This motivates dedicated multi-wavelength searches for bulge MSPs: Some promising directions are briefly discussed.
122 - Jongsu Lee 2018
We have conducted a systematic survey for the X-ray properties of millisecond pulsars (MSPs). Currently, there are 47 MSPs with confirmed X-ray detections. We have also placed the upper limits for the X-ray emission from the other 36 MSPs by using th e archival data. We have normalized their X-ray luminosities $L_{x}$ and their effective photon indices $Gamma$ into a homogeneous data set, which enable us to carry out a detailed statistical analysis. Based on our censored sample, we report a relation of $L_{x}simeq10^{31.05}left(dot{E}/10^{35}right)^{1.31}$ erg/s (2-10 keV) for the MSPs. The inferred X-ray conversion efficiency is found to be lower than previously reported estimate that could be affected by selection bias. $L_{x}$ also correlates/anti-correlates with the magnetic field strength at the light cylinder $B_{LC}$/characteristic age $tau$. On the other hand, there is no correlation between $L_{x}$ and their surface magnetic field strength $B_{s}$. We have further divided the sample into four classes: (i) black-widows, (ii) redbacks, (iii) isolated MSPs and (iv) other MSP binaries, and compare the properties among them. We noted that while the rotational parameters and the orbital periods of redbacks and black-widow are similar, $L_{x}$ of redbacks are significantly higher than those of black-widows in the 2-10 keV band. Also the $Gamma$ of redbacks are apparently smaller than those of black-widows, which indicates the X-ray emission of redbacks are harder than that of black-widows. This can be explained by the different contribution of intrabinary shocks in the X-ray emission of these two classes.
We report on the discovery of gamma-ray pulsations from five millisecond pulsars (MSPs) using the Fermi Large Area Telescope (LAT) and timing ephemerides provided by various radio observatories. We also present confirmation of the gamma-ray pulsation s from a sixth source, PSR J2051-0827. Five of these six MSPs are in binary systems: PSRs J1713+0747, J1741+1351, J1600-3053 and the two black widow binary pulsars PSRs J0610-2100 and 2051-0827. The only isolated MSP is the nearby PSR J1024-0719, which is also known to emit X-rays. We present X-ray observations in the direction of PSRs J1600-3053 and J2051-0827. While the latter is firmly detected, we an only give upper limits for the X-ray flux of the former. There are no dedicated X-ray observations available for the other 3 objects. The MSPs mentioned above, together with most of the MSPs detected by Fermi, are used to put together a sample of 30 gamma-ray MSPs which is used to study the morphology and phase connection of radio and gamma-ray pulse profiles. We show that MSPs with pulsed gamma-ray emission which is phase aligned with the radio emission present the steepest radio spectra and the largest magnetic fields at the light cylinder among all MSPs. As well, we also observe a trend towards very low, or undetectable, radio linear polarisation levels. These properties could be attributed to caustic radio emission produced at a range of different altitudes in the magnetosphere. We note that most of these characteristics are also observed in the Crab pulsar, the only other radio pulsar known to exhibit phase-aligned radio and gamma-ray emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا