ﻻ يوجد ملخص باللغة العربية
Convolutional Neural Networks (CNN) outperform traditional classification methods in many domains. Recently these methods have gained attention in neuroscience and particularly in brain-computer interface (BCI) community. Here, we introduce a CNN optimized for classification of brain states from magnetoencephalographic (MEG) measurements. Our CNN design is based on a generative model of the electromagnetic (EEG and MEG) brain signals and is readily interpretable in neurophysiological terms. We show here that the proposed network is able to decode event-related responses as well as modulations of oscillatory brain activity and that it outperforms more complex neural networks and traditional classifiers used in the field. Importantly, the model is robust to inter-individual differences and can successfully generalize to new subjects in offline and online classification.
We can define a neural network that can learn to recognize objects in less than 100 lines of code. However, after training, it is characterized by millions of weights that contain the knowledge about many object types across visual scenes. Such netwo
Noninvasive medical neuroimaging has yielded many discoveries about the brain connectivity. Several substantial techniques mapping morphological, structural and functional brain connectivities were developed to create a comprehensive road map of neur
Latent dynamics discovery is challenging in extracting complex dynamics from high-dimensional noisy neural data. Many dimensionality reduction methods have been widely adopted to extract low-dimensional, smooth and time-evolving latent trajectories.
Steady-State Visual Evoked Potentials (SSVEPs) are neural oscillations from the parietal and occipital regions of the brain that are evoked from flickering visual stimuli. SSVEPs are robust signals measurable in the electroencephalogram (EEG) and are
One of the primary goals of systems neuroscience is to relate the structure of neural circuits to their function, yet patterns of connectivity are difficult to establish when recording from large populations in behaving organisms. Many previous appro