ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-photon exchange: myth and history

103   0   0.0 ( 0 )
 نشر من قبل Egle Tomasi-Gustafsson
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

After recalling the arguments for possible excess of two-photon contribution over $alpha$-counting, model independent statements about the consequences on the observables will be given. The relevant experimental data are discussed: (polarized and unpolarized) electron and positron elastic scattering on the proton, as well as annihilation data. A reanalysis of unpolarized electron-proton elastic scattering data is presented in terms of the electric to magnetic form factor squared ratio. This observable is in principle more robust against experimental correlations and global normalizations. The present analysis shows indeed that it is a useful quantity that contains reliable and coherent information. The comparison with the ratio extracted from the measurement of the longitudinal to transverse polarization of the recoil proton in polarized electron-proton scattering shows that the results are compatible. These results bring a decisive piece of information in the controversy on the deviation of the proton form factors from the dipole dependence.



قيم البحث

اقرأ أيضاً

In leptophilic scenarios, dark matter interactions with nuclei, relevant for direct detection experiments and for the capture by celestial objects, could only occur via loop-induced processes. If the mediator is a scalar or pseudo-scalar particle, wh ich only couples to leptons, the dominant contribution to dark matter-nucleus scattering would take place via two-photon exchange with a lepton triangle loop. The corresponding diagrams have been estimated in the literature under different approximations. Here, we present new analytical calculations for one-body two-loop and two-body one-loop interactions. The two-loop form factors are presented in closed analytical form in terms of generalized polylogarithms up to weight four. In both cases, we consider the exact dependence on all the involved scales, and study the dependence on the momentum transfer. We show that some previous approximations fail to correctly predict the scattering cross section by several orders of magnitude. Moreover, we show that form factors, in the range of momentum transfer relevant for local galactic dark matter, are smaller than their value at zero momentum transfer, which is usually considered.
We review recent theoretical and experimental progress on the role of two-photon exchange (TPE) in electron-proton scattering at low to moderate momentum transfers. We make a detailed comparison and analysis of the results of competing experiments on the ratio of e+p to e-p elastic scattering cross sections, and of the theoretical calculations describing them. A summary of the current experimental situation is provided, along with an outlook for future experiments.
We apply a subtracted dispersion relation formalism with the aim to improve predictions for the two-photon exchange corrections to elastic electron-proton scattering observables at finite momentum transfers. We study the formalism on the elastic cont ribution, and make a detailed comparison with existing data for unpolarized cross sections as well as polarization transfer observables.
73 - Oleksandr Tomalak 2018
We evaluate the two-photon exchange corrections to the Lamb shift and hyperfine splitting of S states in electronic hydrogen relying on modern experimental data and present the two-photon exchange on a neutron inside the electronic and muonic atoms. These results are relevant for the precise extraction of the isotope shift as well as in the analysis of the ground state hyperfine splitting in usual and muonic hydrogen.
In this work, the two-photon-exchange (TPE) effects in $e^+e^- rightarrow pi^+ pi^-$ at small $sqrt{s}$ are discussed within a hadronic model. In the limit $m_erightarrow 0$, the TPE contribution to the amplitude can be described by one scalar functi on $overline{c}_{1}^{(2gamma)}$. The ratio between this function and the corresponding contribution in one-photon exchange $c_{1}^{(1gamma)}$ reflects all the information of the TPE corrections. The numerical results on this ratio are presented and an artificial function is used to fit the numerical results. The latter can be used conveniently in the further experimental data analysis. The numerical results show the asymmetry of the differential cross sections in $e^+e^- rightarrow pi^+ pi^-$ is about $-4%$ at $sqrt{s}sim 0.7$ GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا