ﻻ يوجد ملخص باللغة العربية
We study weighted Poincare and Poincare-Sobolev type inequalities with an explicit analysis on the dependence on the $A_p$ constants of the involved weights. We obtain inequalities of the form $$ left (frac{1}{w(Q)}int_Q|f-f_Q|^{q}wright )^frac{1}{q}le C_well(Q)left (frac{1}{w(Q)}int_Q | abla f|^p wright )^frac{1}{p}, $$ with different quantitative estimates for both the exponent $q$ and the constant $C_w$. We will derive those estimates together with a large variety of related results as a consequence of a general selfimproving property shared by functions satisfying the inequality $$ frac{1}{|Q|}int_Q |f-f_Q| dmu le a(Q), $$ for all cubes $Qsubsetmathbb{R}^n$ and where $a$ is some functional that obeys a specific discrete geometrical summability condition. We introduce a Sobolev-type exponent $p^*_w>p$ associated to the weight $w$ and obtain further improvements involving $L^{p^*_w}$ norms on the left hand side of the inequality above. For the endpoint case of $A_1$ weights we reach the classical critical Sobolev exponent $p^*=frac{pn}{n-p}$ which is the largest possible and provide different type of quantitative estimates for $C_w$. We also show that this best possible estimate cannot hold with an exponent on the $A_1$ constant smaller than $1/p$. We also provide an argument based on extrapolation ideas showing that there is no $(p,p)$, $pgeq1$, Poincare inequality valid for the whole class of $RH_infty$ weights by showing their intimate connection with the failure of Poincare inequalities, $(p,p)$ in the range $0<p<1$.
The dual purpose of this article is to establish bilinear Poincare-type estimates associated to an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The
In this paper we give a geometric condition which ensures that $(q,p)$-Poincare-Sobolev inequalities are implied from generalized $(1,1)$-Poincare inequalities related to $L^1$ norms in the context of product spaces. The concept of eccentricity plays
This paper continues the program initiated in the works by the authors [60], [61] and [62] and by the authors with Li [51] and [52] to establish higher order Poincare-Sobolev, Hardy-Sobolev-Mazya, Adams and Hardy-Adams inequalities on real hyperbolic
Though Adams and Hardy-Adams inequalities can be extended to general symmetric spaces of noncompact type fairly straightforwardly by following closely the systematic approach developed in our early works on real and complex hyperbolic spaces, higher
Using the Fourier analysis techniques on hyperbolic spaces and Greens function estimates, we confirm in this paper the conjecture given by the same authors in [43]. Namely, we prove that the sharp constant in the $frac{n-1}{2}$-th order Hardy-Sobolev