ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation hardness of small-pitch 3D pixel sensors up to a fluence of $3times10^{16}$ n$_{mathrm{eq}}$/cm$^2$

122   0   0.0 ( 0 )
 نشر من قبل Joern Lange
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Small-pitch 3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC pixel detector upgrades. Prototype 3D sensors with pixel sizes of 50$times$50 and 25$times$100 $mu$m$^{2}$ connected to the existing ATLAS FE-I4 readout chip have been produced by CNM Barcelona. Irradiations up to particle fluences of $3times10^{16}$ n$_{mathrm{eq}}$/cm$^2$, beyond the full expected HL-LHC fluences at the end of lifetime, have been carried out at Karlsruhe and CERN. The performance of the 50$times$50 $mu$m$^{2}$ devices has been measured in the laboratory and beam tests at CERN SPS. A high charge collected and a high hit efficiency of 98% were found up to the highest fluence. The bias voltage to reach the target efficiency of 97% at perpendicular beam incidence was found to be about 100 V at $1.4times10^{16}$ n$_{mathrm{eq}}$/cm$^2$ and 150 V at $2.8times10^{16}$ n$_{mathrm{eq}}$/cm$^2$, significantly lower than for the previous IBL 3D generation with larger inter-electrode distance and than for planar sensors. The power dissipation at -25$^{circ}$C and $1.4times10^{16}$ n$_{mathrm{eq}}$/cm$^2$ was found to be 13 mW/cm$^2$. Hence, 3D pixel detectors demonstrated superior radiation hardness and were chosen as the baseline for the inner layer of the ATLAS HL-LHC pixel detector upgrade.



قيم البحث

اقرأ أيضاً

468 - J. Lange , S. Grinstein , M. Manna 2017
A new generation of 3D silicon pixel detectors with a small pixel size of 50$times$50 and 25$times$100 $mu$m$^{2}$ is being developed for the HL-LHC tracker upgrades. The radiation hardness of such detectors was studied in beam tests after irradiatio n to HL-LHC fluences up to $1.4times10^{16}$ n$_{mathrm{eq}}$/cm$^2$. At this fluence, an operation voltage of only 100 V is needed to achieve 97% hit efficiency, with a power dissipation of 13 mW/cm$^2$ at -25$^{circ}$C, considerably lower than for previous 3D sensor generations and planar sensors.
295 - P. Weigell 2011
A new module concept for future ATLAS pixel detector upgrades is presented, where thin n-in-p silicon sensors are connected to the front-end chip exploiting the novel Solid Liquid Interdiffusion technique (SLID) and the signals are read out via Inter Chip Vias (ICV) etched through the front-end. This should serve as a proof of principle for future four-side buttable pixel assemblies for the ATLAS upgrades, without the cantilever presently needed in the chip for the wire bonding. The SLID interconnection, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It is characterized by a very thin eutectic Cu-Sn alloy and allows for stacking of different layers of chips on top of the first one, without destroying the pre-existing bonds. This paves the way for vertical integration technologies. Results of the characterization of the first pixel modules interconnected through SLID as well as of one sample irradiated to $2cdot10^{15}$, eqcm{} are discussed. Additionally, the etching of ICV into the front-end wafers was started. ICVs will be used to route the signals vertically through the front-end chip, to newly created pads on the backside. In the EMFT approach the chip wafer is thinned to (50--60),$mu$m.
An instrument has been developed for precision controlled exposures of electronic devices and material samples in particle beams. The instrument provides simultaneously a real time record of the profile of the beam and the fluence received. The syste m is capable of treating devices with dimensional scales ranging from millimeters to extended objects of cross sections measured in tens of square centimeters. The instrument has been demonstrated to operate effectively in integrated fluences ranging up to a few times $10^{16}$ 1-MeV-neutron-equivalent/cm$^{2}$ (n$_{textrm{eq}}$). The positioner portion of the system comprises a set of remotely controllable sample holders incorporating cooling and interfaces for sample power and readout, all constructed from low activation technologies. The monitoring component of the system samples the current or voltage of radiation tolerant silicon diodes placed directly in the path of the beam.
Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolu tions. LGADs with an active thickness of about 45 $mu$m were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to $10^{15}$ n$_{eq}$/cm$^2$. The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of $3times10^{14}$ n$_{eq}$/cm$^2$, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At $10^{15}$ n$_{eq}$/cm$^2$, the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.
149 - T. Rohe , A. Bean , W. Erdmann 2010
Pixel detectors are used in the innermost part of the multi purpose experiments at LHC and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardne ss of all detector components has thoroughly been tested up to the fluences expected at the LHC. In case of an LHC upgrade, the fluence will be much higher and it is not yet clear how long the present pixel modules will stay operative in such a harsh environment. The aim of this study was to establish such a limit as a benchmark for other possible detector concepts considered for the upgrade. As the sensors and the readout chip are the parts most sensitive to radiation damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to 6E14 Neq and with 21 GeV protons at CERN up to 5E15 Neq. After irradiation the response of the system to beta particles from a Sr-90 source was measured to characterise the charge collection efficiency of the sensor. Radiation induced changes in the readout chip were also measured. The results show that the present pixel modules can be expected to be still operational after a fluence of 2.8E15 Neq. Samples irradiated up to 5E15 Neq still see the beta particles. However, further tests are needed to confirm whether a stable operation with high particle detection efficiency is possible after such a high fluence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا