ﻻ يوجد ملخص باللغة العربية
The bent-core liquid crystals (LCs) are highly regarded as the next-generation materials for electro-optic devices. The nematic (N) phase of these LCs possesses highly ordered smectic-like cybotactic clusters which are promising in terms of ferroelectric-like behaviour in the N phase itself. We have studied a one-dimensional (1D) Landau-deGennes model of spatially inhomogeneous order parameters for the N phase of bent-core LCs. We investigate the effects of spatial confinement and coupling (between these clusters and the surrounding LC molecules) on the order parameters to model cluster formation in recently reported experiments. The coupling is found to increase the cluster order parameter significantly, suggesting an enhancement in the cluster formation and could also predict a possible transition to a phase with weak nematic-like ordering in the vicinity of nematic-isotropic transition upon appreciable increase of the coupling parameter {gamma}.
We study a quantum-dots (QDs) dispersed bent core liquid crystalline system in planar geometry and present experimental measurements of the order parameter, dielectric dispersion and absorption spectra, optical textures, with attention to variations
We analyze the interaction with uniform external fields of nematic liquid crystals within a recent generalized free-energy posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic director. We review so
We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the presence of an alternating electric field (frequency $omega$), which leads to stripe patterns (flexodomains) in the plane of the layer. Thi
We investigate a number of complex patterns driven by the electro-convection instability in a planarly aligned layer of a nematic liquid crystal. They are traced back to various secondary instabilities of the ideal roll patterns bifurcating at onset
The director configuration of disclination lines in nematic liquid crystals in the presence of an external magnetic field is evaluated. Our method is a combination of a polynomial expansion for the director and of further analytical approximations wh