ﻻ يوجد ملخص باللغة العربية
Vector control is critical to limit the circulation of vector-borne diseases like chikungunya, dengue or zika which have become important issues around the world. Among them the Sterile Insect Technique (SIT) and the Incompatible Insect Technique (IIT) recently aroused a renewed interest. In this paper we derive and study a minimalistic mathematical model designed for Aedes mosquito population elimination by SIT/IIT. Contrary to most of the previous models, it is bistable in general, allowing simultaneously for elimination of the population and for its survival. We consider dierent types of releases (constant, periodic or impulsive) and show necessary conditions to reach elimination in each case. We also estimate both sucient and minimal treatment times. Biological parameters are estimated from a case study of an Aedes polynesiensis population, for which extensive numerical investigations illustrate the analytical results. The applications of this work are twofold: to help identifying some key parameters that may need further eld investigations, and to help designing release protocols.
Vector/Pest control is essential to reduce the risk of vector-borne diseases or losses in crop fields. Among biological control tools, the sterile insect technique (SIT), is the most promising one. SIT control generally consists of massive releases o
The development of sustainable vector/pest control methods is of utmost importance to reduce the risk of vector-borne diseases and pest damages on crops. Among them, the Sterile Insect Technique (SIT) is a very promising one. In this paper, using dif
The sterile insect technique consists in massive release of sterilized males in the aim to reduce the size of mosquitoes population or even eradicate it. In this work, we investigate the feasability of using the sterile insect technique as a barrier
We consider a minimalist model for the Sterile Insect Technique (SIT), assuming that residual fertility can occur in the sterile male population.Taking into account that we are able to get regular measurements from the biological system along the con
The deer tick, $textit{Ixodes scapularis}$, is a vector for numerous human diseases, including Lyme disease, anaplasmosis, and babesiosis. Concern is rising in the US and abroad as the population and range of this species grow and new diseases emerge