ﻻ يوجد ملخص باللغة العربية
A string $S[1,n]$ is a power (or tandem repeat) of order $k$ and period $n/k$ if it can decomposed into $k$ consecutive equal-length blocks of letters. Powers and periods are fundamental to string processing, and algorithms for their efficient computation have wide application and are heavily studied. Recently, Fici et al. (Proc. ICALP 2016) defined an {em anti-power} of order $k$ to be a string composed of $k$ pairwise-distinct blocks of the same length ($n/k$, called {em anti-period}). Anti-powers are a natural converse to powers, and are objects of combinatorial interest in their own right. In this paper we initiate the algorithmic study of anti-powers. Given a string $S$, we describe an optimal algorithm for locating all substrings of $S$ that are anti-powers of a specified order. The optimality of the algorithm follows form a combinatorial lemma that provides a lower bound on the number of distinct anti-powers of a given order: we prove that a string of length $n$ can contain $Theta(n^2/k)$ distinct anti-powers of order $k$.
The general adwords problem has remained largely unresolved. We define a subcase called {em $k$-TYPICAL}, $k in Zplus$, as follows: the total budget of all the bidders is sufficient to buy $k$ bids for each bidder. This seems a reasonable assumption
Given a metric $(V,d)$ and a $textsf{root} in V$, the classic $textsf{$k$-TSP}$ problem is to find a tour originating at the $textsf{root}$ of minimum length that visits at least $k$ nodes in $V$. In this work, motivated by applications where the inp
In the Subset Sum problem we are given a set of $n$ positive integers $X$ and a target $t$ and are asked whether some subset of $X$ sums to $t$. Natural parameters for this problem that have been studied in the literature are $n$ and $t$ as well as t
We show that it is possible to use Bondy-Chvatal closure to design an FPT algorithm that decides whether or not it is possible to cover vertices of an input graph by at most k vertex disjoint paths in the complement of the input graph. More precisely
We develop an approximation algorithm for the partition function of the ferromagnetic Potts model on graphs with a small-set expansion condition, and as a step in the argument we give a graph partitioning algorithm with expansion and minimum degree c