ﻻ يوجد ملخص باللغة العربية
We present a general formalism for studying the effects of dynamical heterogeneity in open quantum systems. We develop this formalism in the state space of density operators, on which ensembles of quantum states can be conveniently represented by probability distributions. We describe how this representation reduces ambiguity in the definition of quantum ensembles by providing the ability to explicitly separate classical and quantum sources of probabilistic uncertainty. We then derive explicit equations of motion for state space distributions of both open and closed quantum systems and demonstrate that resulting dynamics take a fluid mechanical form analogous to a classical probability fluid on Hamiltonian phase space, thus enabling a straightforward quantum generalization of Liouvilles theorem. We illustrate the utility of our formalism by analyzing the dynamics of an open two-level system using the state-space formalism that are shown to be consistent with the derived analytical results.
Continuing our work on the nature and existence of fluctuation-dissipation relations (FDR) in linear and nonlinear open quantum systems [1-3], here we consider such relations when a linear system is in a nonequilibrium steady state (NESS). With the m
An open quantum system, whose time evolution is governed by a master equation, can be driven into a given pure quantum state by an appropriate design of the system-reservoir coupling. This points out a route towards preparing many body states and non
We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states, when driven through a region of small gap. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitio
We analyze quantum state-transfer optimization within hybrid open systems, from a noisy (write-in) qubit to its quiet counterpart (storage qubit). Intriguing interplay is revealed between our ability to avoid bath-induced errors that profoundly depen
Irreversibility is a fundamental concept with important implications at many levels. It pinpoints the fundamental difference between the intrinsically reversible microscopic equations of motion and the unidirectional arrow of time that emerges at the