ﻻ يوجد ملخص باللغة العربية
We study the dependence on field parametrization of the functional renormalization group equation in the $f(R)$ truncation for the effective average action. We perform a systematic analysis of the dependence of fixed points and critical exponents in polynomial truncations. We find that, beyond the Einstein-Hilbert truncation, results are qualitatively different depending on the choice of parametrization. In particular, we observe that there are two different classes of fixed points, one with three relevant directions and the other with two. The computations are performed in the background approximation. We compare our results with the available literature and analyze how different schemes in the regularizations can affect the fixed point structure.
The present practice of Asymptotic Safety in gravity is in conflict with explicit calculations in low energy quantum gravity. This raises the question of whether the present practice meets the Weinberg condition for Asymptotic Safety. I argue, with e
We consider the renormalization of d-dimensional hypersurfaces (branes) embedded in flat (d+1)-dimensional space. We parametrize the truncated effective action in terms of geometric invariants built from the extrinsic and intrinsic curvatures. We stu
We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled scalars and fermions. This is done within the functional renormalisation group setup put forward in cite{Christiansen:2015rva} for pure gravity. It
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role pla
Considering the scale dependent effective spacetimes implied by the functional renormalization group in d-dimensional Quantum Einstein Gravity, we discuss the representation of entire evolution histories by means of a single, (d + 1)-dimensional mani