ﻻ يوجد ملخص باللغة العربية
In this work, we study the properties and structure of a massive and rapidly rotating protoneutron star (PNS) with hyperon content. We follow several stages of quasi-stationary evolution in an approximate way at four discrete steps. We use a density-dependent (DD) relativistic mean field theory (RMF) model and calculate different quantities such as mass, equatorial radius, moment of inertia, and quadrupole moment to get different rotating configurations upto the mass-shedding limit. We study the effect of the appearance of $Lambda$, the lightest of all hyperons, on each of the evolutionary stages of the PNS. We also check its sensitivity to the inclusion of $phi$ vector meson as a mediator of $Lambda-Lambda$ interaction in detail. Finally, we investigate the universal relations between moment of inertia and compactness in the context of a hot and young compact object.
The discovery of a 2 Msun neutron star provided a robust constraint for the theory of exotic dense matter, bringing into question the existence of strange baryons in the interiors of neutron stars. Although many theories fail to reproduce this observ
Extremely strong magnetic fields of the order of $10^{15},{rm G}$ are required to explain the properties of magnetars, the most magnetic neutron stars. Such a strong magnetic field is expected to play an important role for the dynamics of core-collap
In this paper, we use a three flavor non-local Nambu--Jona-Lasinio (NJL) model, an~improved effective model of Quantum Chromodynamics (QCD) at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular e
Observations of massive ($M approx 2.0~M_odot$) neutron stars (NSs), PSRs J1614-2230 and J0348+0432, rule out most of the models of nucleon-hyperon matter employed in NS simulations. Here we construct three possible models of nucleon-hyperon matter c
The cooling process of a protoneutron star is investigated with focus on its sensitivity to properties of hot and dense matter. An equation of state, which includes the nucleon effective mass and nuclear symmetry energy at twice the saturation densit