ﻻ يوجد ملخص باللغة العربية
Speech-driven facial animation is the process which uses speech signals to automatically synthesize a talking character. The majority of work in this domain creates a mapping from audio features to visual features. This often requires post-processing using computer graphics techniques to produce realistic albeit subject dependent results. We present a system for generating videos of a talking head, using a still image of a person and an audio clip containing speech, that doesnt rely on any handcrafted intermediate features. To the best of our knowledge, this is the first method capable of generating subject independent realistic videos directly from raw audio. Our method can generate videos which have (a) lip movements that are in sync with the audio and (b) natural facial expressions such as blinks and eyebrow movements. We achieve this by using a temporal GAN with 2 discriminators, which are capable of capturing different aspects of the video. The effect of each component in our system is quantified through an ablation study. The generated videos are evaluated based on their sharpness, reconstruction quality, and lip-reading accuracy. Finally, a user study is conducted, confirming that temporal GANs lead to more natural sequences than a static GAN-based approach.
Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The majority of work in this domain creates a mapping from audio features to visual features. This approach often requires post-p
Attention-based methods and Connectionist Temporal Classification (CTC) network have been promising research directions for end-to-end (E2E) Automatic Speech Recognition (ASR). The joint CTC/Attention model has achieved great success by utilizing bot
In this paper, we present an end-to-end training framework for building state-of-the-art end-to-end speech recognition systems. Our training system utilizes a cluster of Central Processing Units(CPUs) and Graphics Processing Units (GPUs). The entire
This article describes an efficient end-to-end speech translation (E2E-ST) framework based on non-autoregressive (NAR) models. End-to-end speech translation models have several advantages over traditional cascade systems such as inference latency red
Synthesized speech from articulatory movements can have real-world use for patients with vocal cord disorders, situations requiring silent speech, or in high-noise environments. In this work, we present EMA2S, an end-to-end multimodal articulatory-to