A genomic characterization of metallic nanoparticles


الملخص بالإنكليزية

With a focus on platinum nanoparticles of different sizes (diameter of 1-9 nm) and shapes, we sequence their geometrical genome by recording the relative occurrence of all the non equivalent active site, classified according to the number of neighbours in their first and second coordination shell. The occurrence of sites is morphology and size dependent, with significant changes in the relative occurrence up to 9 nm. Our geometrical genome sequencing approach is immediately transferable to address the effects of the morphological polydispersivity in size-selected samples and the influence of temperature, including ionic vibrations and thermal activated processes. The proposed geometrical genome forecasts an enhancement of the catalytic reduction of molecular oxygen on stellated and anisotropic platinum twinned nanoparticles, with their shortest axes of ~2 nm, and an irreversible disruption of the Pt nanocatalysts structure above 1000 K.

تحميل البحث