ﻻ يوجد ملخص باللغة العربية
We study exact, analytic, static, spherically symmetric, four-dimensional solutions of minimally coupled Einstein-scalar gravity, sourced by a scalar field whose profile has the form of the sine-Gordon soliton. We present a horizonless, everywhere regular and positive-mass solution (a solitonic star) and a black hole. The scalar potential behaves as a constant near the origin and vanishes at infinity. In particular, the solitonic scalar star interpolates between an anti-de Sitter and an asympototically flat spacetime. The black-hole spacetime is unstable against linear perturbations, while due to numerical issues, we were not able to determine with confidence whether or not the star-like background solution is stable.
We study equilibrium configurations of a homogenous ball of matter in a bootstrapped description of gravity which includes a gravitational self-interaction term beyond the Newtonian coupling. Both matter density and pressure are accounted for as sour
In this work, we evaluate the Shannon-like entropic measure of spatially-localized functions for a five-dimensional braneworld generated by a double sine-Gordon (DSG) potential. The differential configurational entropy (DCE) has been shown in several
In the context of complex scalar field coupled to Einstein gravity theory, we present a novel family of solutions of Kerr black holes with excited-state scalar hair inspired by the work of Herdeiro and Radu in [Phys. Rev. Lett. {bf 112}, 221101 (2014
The phenomenon of spontaneous scalarization of Reissner-Nordstr{o}m (RN) black holes has recently been found in an Einstein-Maxwell-scalar (EMS) model due to a non-minimal coupling between the scalar and Maxwell fields. Non-linear electrodynamics, e.
In this paper, we demonstrate that a phenomenon described as topological inflation during which inflation occurs inside the core of topological defects, has a non-topological counterpart. This appears in a simple set-up containing Einstein gravity co