Congruences modulo powers of 3 for 2-color partition triples


الملخص بالإنكليزية

Let $p_{k,3}(n)$ enumerate the number of 2-color partition triples of $n$ where one of the colors appears only in parts that are multiples of $k$. In this paper, we prove several infinite families of congruences modulo powers of 3 for $p_{k,3}(n)$ with $k=1, 3$, and $9$. For example, for all integers $ngeq0$ and $alphageq1$, we prove that begin{align*} p_{3,3}left(3^{alpha}n+dfrac{3^{alpha}+1}{2}right) &equiv0pmod{3^{alpha+1}} end{align*} and begin{align*} p_{3,3}left(3^{alpha+1}n+dfrac{5times3^{alpha}+1}{2}right) &equiv0pmod{3^{alpha+4}}. end{align*}

تحميل البحث