ﻻ يوجد ملخص باللغة العربية
Using spectroscopic radial velocities with the APOGEE instrument and Gaia distance estimates, we demonstrate that Kepler-503b, currently considered a validated Kepler planet, is in fact a brown-dwarf/low-mass star in a nearly circular 7.2-day orbit around a subgiant star. Using a mass estimate for the primary star derived from stellar models, we derive a companion mass and radius of $0.075pm0.003 M_{odot}$ ($78.6pm3.1 M_{Jup}$) and $0.099^{+0.006}_{-0.004} R_{odot}$ ($0.96^{+0.06}_{-0.04} R_{Jup}$), respectively. Assuming the system is coeval, the evolutionary state of the primary indicates the age is $sim6.7$ Gyr. Kepler-503b sits right at the hydrogen burning mass limit, straddling the boundary between brown dwarfs and very low-mass stars. More precise radial velocities and secondary eclipse spectroscopy with James Webb Space Telescope will provide improved measurements of the physical parameters and age of this important system to better constrain and understand the physics of these objects and their spectra. This system emphasizes the value of radial velocity observations to distinguish a genuine planet from astrophysical false positives, and is the first result from the SDSS-IV monitoring of Kepler planet candidates with the multi-object APOGEE instrument.
It is unknown whether or not low-mass stars can form at low metallicity. While theoretical simulations of Population III (Pop III) star formation show that protostellar disks can fragment, it is impossible for those simulations to discern if those fr
We report the discovery of TOI 694 b and TIC 220568520 b, two low-mass stellar companions in eccentric orbits around metal-rich Sun-like stars, first detected by the Transiting Exoplanet Survey Satellite (TESS). TOI 694 b has an orbital period of 48.
We present the discovery of NGTS J0930-18, an extreme mass ratio eclipsing M-dwarf binary system with an early M-dwarf primary and a late M-dwarf secondary close to the hydrogen burning limit. Global modelling of photometry and radial velocities reve
We report the discovery of five transiting companions near the hydrogen-burning mass limit in close orbits around main sequence stars originally identified by the Transiting Exoplanet Survey Satellite (TESS) as TESS Objects of Interest (TOIs): TOI-14
We present Keck I/OSIRIS and Keck II/NIRC2 adaptive optics imaging of two member candidates of the Praesepe stellar cluster (d=186.18$pm$0.11 pc; 590-790 Myr), UGC J08451066+2148171 (L1.5$pm$0.5) and UGCS J08301935$+$2003293 (no spectroscopic classif