ترغب بنشر مسار تعليمي؟ اضغط هنا

Reducing Disparate Exposure in Ranking: A Learning To Rank Approach

310   0   0.0 ( 0 )
 نشر من قبل Meike Zehlike
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Ranked search results have become the main mechanism by which we find content, products, places, and people online. Thus their ordering contributes not only to the satisfaction of the searcher, but also to career and business opportunities, educational placement, and even social success of those being ranked. Researchers have become increasingly concerned with systematic biases in data-driven ranking models, and various post-processing methods have been proposed to mitigate discrimination and inequality of opportunity. This approach, however, has the disadvantage that it still allows an unfair ranking model to be trained. In this paper we explore a new in-processing approach: DELTR, a learning-to-rank framework that addresses potential issues of discrimination and unequal opportunity in rankings at training time. We measure these problems in terms of discrepancies in the average group exposure and design a ranker that optimizes search results in terms of relevance and in terms of reducing such discrepancies. We perform an extensive experimental study showing that being colorblind can be among the best or the worst choices from the perspective of relevance and exposure, depending on how much and which kind of bias is present in the training set. We show that our in-processing method performs better in terms of relevance and exposure than a pre-processing and a post-processing method across all tested scenarios.



قيم البحث

اقرأ أيضاً

Search and recommendation systems, such as search engines, recruiting tools, online marketplaces, news, and social media, output ranked lists of content, products, and sometimes, people. Credit ratings, standardized tests, risk assessments output onl y a score, but are also used implicitly for ranking. Bias in such ranking systems, especially among the top ranks, can worsen social and economic inequalities, polarize opinions, and reinforce stereotypes. On the other hand, a bias correction for minority groups can cause more harm if perceived as favoring group-fair outcomes over meritocracy. In this paper, we formulate the problem of underranking in group-fair rankings, which was not addressed in previous work. Most group-fair ranking algorithms post-process a given ranking and output a group-fair ranking. We define underranking based on how close the group-fair rank of each item is to its original rank, and prove a lower bound on the trade-off achievable for simultaneous underranking and group fairness in ranking. We give a fair ranking algorithm that takes any given ranking and outputs another ranking with simultaneous underranking and group fairness guarantees comparable to the lower bound we prove. Our algorithm works with group fairness constraints for any number of groups. Our experimental results confirm the theoretical trade-off between underranking and group fairness, and also show that our algorithm achieves the best of both when compared to the state-of-the-art baselines.
Searching large digital repositories can be extremely frustrating, as common list-based formats encourage users to adopt a convenience-sampling approach that favours chance discovery and random search, over meaningful exploration. We have designed a methodology that allows users to visually and thematically explore corpora, while developing personalised holistic reading strategies. We describe the results of a three-phase qualitative study, in which experienced researchers used our interactive visualisation approach to analyse a set of publications and select relevant themes and papers. Using in-depth semi-structured interviews and stimulated recall, we found that users: (i) selected papers that they otherwise would not have read, (ii) developed a more coherent reading strategy, and (iii) understood the thematic structure and relationships between papers more effectively. Finally, we make six design recommendations to enhance current digital repositories that we have shown encourage users to adopt a more holistic and thematic research approach.
Expert finding is an information retrieval task that is concerned with the search for the most knowledgeable people with respect to a specific topic, and the search is based on documents that describe peoples activities. The task involves taking a us er query as input and returning a list of people who are sorted by their level of expertise with respect to the user query. Despite recent interest in the area, the current state-of-the-art techniques lack in principled approaches for optimally combining different sources of evidence. This article proposes two frameworks for combining multiple estimators of expertise. These estimators are derived from textual contents, from graph-structure of the citation patterns for the community of experts, and from profile information about the experts. More specifically, this article explores the use of supervised learning to rank methods, as well as rank aggregation approaches, for combing all of the estimators of expertise. Several supervised learning algorithms, which are representative of the pointwise, pairwise and listwise approaches, were tested, and various state-of-the-art data fusion techniques were also explored for the rank aggregation framework. Experiments that were performed on a dataset of academic publications from the Computer Science domain attest the adequacy of the proposed approaches.
How to obtain an unbiased ranking model by learning to rank with biased user feedback is an important research question for IR. Existing work on unbiased learning to rank (ULTR) can be broadly categorized into two groups -- the studies on unbiased le arning algorithms with logged data, namely the textit{offline} unbiased learning, and the studies on unbiased parameters estimation with real-time user interactions, namely the textit{online} learning to rank. While their definitions of textit{unbiasness} are different, these two types of ULTR algorithms share the same goal -- to find the best models that rank documents based on their intrinsic relevance or utility. However, most studies on offline and online unbiased learning to rank are carried in parallel without detailed comparisons on their background theories and empirical performance. In this paper, we formalize the task of unbiased learning to rank and show that existing algorithms for offline unbiased learning and online learning to rank are just the two sides of the same coin. We evaluate six state-of-the-art ULTR algorithms and find that most of them can be used in both offline settings and online environments with or without minor modifications. Further, we analyze how different offline and online learning paradigms would affect the theoretical foundation and empirical effectiveness of each algorithm on both synthetic and real search data. Our findings could provide important insights and guideline for choosing and deploying ULTR algorithms in practice.
Improved search quality enhances users satisfaction, which directly impacts sales growth of an E-Commerce (E-Com) platform. Traditional Learning to Rank (LTR) algorithms require relevance judgments on products. In E-Com, getting such judgments poses an immense challenge. In the literature, it is proposed to employ user feedback (such as clicks, add-to-basket (AtB) clicks and orders) to generate relevance judgments. It is done in two steps: first, query-product pair data are aggregated from the logs and then order rate etc are calculated for each pair in the logs. In this paper, we advocate counterfactual risk minimization (CRM) approach which circumvents the need of relevance judgements, data aggregation and is better suited for learning from logged data, i.e. contextual bandit feedback. Due to unavailability of public E-Com LTR dataset, we provide textit{Mercateo dataset} from our platform. It contains more than 10 million AtB click logs and 1 million order logs from a catalogue of about 3.5 million products associated with 3060 queries. To the best of our knowledge, this is the first work which examines effectiveness of CRM approach in learning ranking model from real-world logged data. Our empirical evaluation shows that our CRM approach learns effectively from logged data and beats a strong baseline ranker ($lambda$-MART) by a huge margin. Our method outperforms full-information loss (e.g. cross-entropy) on various deep neural network models. These findings demonstrate that by adopting CRM approach, E-Com platforms can get better product search quality compared to full-information approach. The code and dataset can be accessed at: https://github.com/ecom-research/CRM-LTR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا