ﻻ يوجد ملخص باللغة العربية
We want to study whether the astrometric and photometric accuracies obtained for the Carte du Ciel plates digitized with a commercial digital camera are high enough for scientific exploitation of the plates. We use a digital camera Canon EOS~5Ds, with a 100mm macrolens for digitizing. We analyze six single-exposure plates and four triple-exposure plates from the Helsinki zone of Carte du Ciel (+39 degr < delta < 47 degr). Each plate is digitized using four images, with a significant central area being covered twice for quality control purposes. The astrometric calibration of the digitized images is done with the data from the Gaia TGAS (Tycho-Gaia Astrometric Solution) of the first Gaia data release (Gaia DR1), Tycho-2, HSOY (Hot Stuff for One Year), UCAC5 (USNO CCD Astrograph Catalog), and PMA catalogs. The best astrometric accuracy is obtained with the UCAC5 reference stars. The astrometric accuracy for single-exposure plates is sigma(R.A.)=0.16 and sigma(Dec.)=0.15 expressed as a Gaussian deviation of the astrometric residuals. For triple-exposure plates the astrometric accuracy is sigma(R.A.)=0.12 and sigma(Dec.)=0.13. The 1-sigma uncertainty of photometric calibration is about 0.28 mag and 0.24 mag for single- and triple-exposure plates, respectively. We detect the photographic adjacency (Kostinsky) effect in the triple-exposure plates. We show that accuracies at least of the level of scanning machines can be achieved with a digital camera, without any corrections for possible distortions caused by our instrumental setup. This method can be used to rapidly and inexpensively digitize and calibrate old photographic plates enabling their scientific exploitation.
A new procedure for the reduction of Carte du Ciel plates is presented. A typical Carte du Ciel plate corresponding to the Bordeaux zone has been taken as an example. It shows triple exposures for each object and the modelling of the data has been pe
Photographic plate archives contain a wealth of information about positions and brightness celestial objects had decades ago. Plate digitization is necessary to make this information accessible, but extracting it is a technical challenge. We develop
The VLBI USNO 2016A (U16A) solution is part of a work-in-progress effort by USNO towards the preparation of the ICRF3. Most of the astrometric improvement with respect to the ICRF2 is due to the re-observation of the VCS sources. Our objective in thi
We present the details of the photometric and astrometric calibration of the Pan-STARRS1 $3pi$ Survey. The photometric goals were to reduce the systematic effects introduced by the camera and detectors, and to place all of the observations onto a pho
Stochastic field distortions caused by atmospheric turbulence are a fundamental limitation to the astrometric accuracy of ground-based imaging. This distortion field is measurable at the locations of stars with accurate positions provided by the Gaia