ترغب بنشر مسار تعليمي؟ اضغط هنا

Bandit-Based Monte Carlo Optimization for Nearest Neighbors

210   0   0.0 ( 0 )
 نشر من قبل Tavor Baharav
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The celebrated Monte Carlo method estimates an expensive-to-compute quantity by random sampling. Bandit-based Monte Carlo optimization is a general technique for computing the minimum of many such expensive-to-compute quantities by adaptive random sampling. The technique converts an optimization problem into a statistical estimation problem which is then solved via multi-armed bandits. We apply this technique to solve the problem of high-dimensional $k$-nearest neighbors, developing an algorithm which we prove is able to identify exact nearest neighbors with high probability. We show that under regularity assumptions on a dataset of $n$ points in $d$-dimensional space, the complexity of our algorithm scales logarithmically with the dimension of the data as $Oleft((n+d)log^2 left(frac{nd}{delta}right)right)$ for error probability $delta$, rather than linearly as in exact computation requiring $O(nd)$. We corroborate our theoretical results with numerical simulations, showing that our algorithm outperforms both exact computation and state-of-the-art algorithms such as kGraph, NGT, and LSH on real datasets.



قيم البحث

اقرأ أيضاً

Bayesian optimization provides sample-efficient global optimization for a broad range of applications, including automatic machine learning, engineering, physics, and experimental design. We introduce BoTorch, a modern programming framework for Bayes ian optimization that combines Monte-Carlo (MC) acquisition functions, a novel sample average approximation optimization approach, auto-differentiation, and variance reduction techniques. BoTorchs modular design facilitates flexible specification and optimization of probabilistic models written in PyTorch, simplifying implementation of new acquisition functions. Our approach is backed by novel theoretical convergence results and made practical by a distinctive algorithmic foundation that leverages fast predictive distributions, hardware acceleration, and deterministic optimization. We also propose a novel one-shot formulation of the Knowledge Gradient, enabled by a combination of our theoretical and software contributions. In experiments, we demonstrate the improved sample efficiency of BoTorch relative to other popular libraries.
Bandit problems with linear or concave reward have been extensively studied, but relatively few works have studied bandits with non-concave reward. This work considers a large family of bandit problems where the unknown underlying reward function is non-concave, including the low-rank generalized linear bandit problems and two-layer neural network with polynomial activation bandit problem. For the low-rank generalized linear bandit problem, we provide a minimax-optimal algorithm in the dimension, refuting both conjectures in [LMT21, JWWN19]. Our algorithms are based on a unified zeroth-order optimization paradigm that applies in great generality and attains optimal rates in several structured polynomial settings (in the dimension). We further demonstrate the applicability of our algorithms in RL in the generative model setting, resulting in improved sample complexity over prior approaches. Finally, we show that the standard optimistic algorithms (e.g., UCB) are sub-optimal by dimension factors. In the neural net setting (with polynomial activation functions) with noiseless reward, we provide a bandit algorithm with sample complexity equal to the intrinsic algebraic dimension. Again, we show that optimistic approaches have worse sample complexity, polynomial in the extrinsic dimension (which could be exponentially worse in the polynomial degree).
In this paper, we report progress on answering the open problem presented by Pagh~[14], who considered the nearest neighbor search without false negatives for the Hamming distance. We show new data structures for solving the $c$-approximate nearest n eighbors problem without false negatives for Euclidean high dimensional space $mathcal{R}^d$. These data structures work for any $c = omega(sqrt{log{log{n}}})$, where $n$ is the number of points in the input set, with poly-logarithmic query time and polynomial preprocessing time. This improves over the known algorithms, which require $c$ to be $Omega(sqrt{d})$. This improvement is obtained by applying a sequence of reductions, which are interesting on their own. First, we reduce the problem to $d$ instances of dimension logarithmic in $n$. Next, these instances are reduced to a number of $c$-approximate nearest neighbor search instances in $big(mathbb{R}^kbig)^L$ space equipped with metric $m(x,y) = max_{1 le i le L}(lVert x_i - y_irVert_2)$.
The combination of Monte-Carlo tree search (MCTS) with deep reinforcement learning has led to significant advances in artificial intelligence. However, AlphaZero, the current state-of-the-art MCTS algorithm, still relies on handcrafted heuristics tha t are only partially understood. In this paper, we show that AlphaZeros search heuristics, along with other common ones such as UCT, are an approximation to the solution of a specific regularized policy optimization problem. With this insight, we propose a variant of AlphaZero which uses the exact solution to this policy optimization problem, and show experimentally that it reliably outperforms the original algorithm in multiple domains.
This paper addresses the problem of optimal control using search trees. We start by considering multi-armed bandit problems with continuous action spaces and propose LD-HOO, a limited depth variant of the hierarchical optimistic optimization (HOO) al gorithm. We provide a regret analysis for LD-HOO and show that, asymptotically, our algorithm exhibits the same cumulative regret as the original HOO while being faster and more memory efficient. We then propose a Monte Carlo tree search algorithm based on LD-HOO for optimal control problems and illustrate the resulting approachs application in several optimal control problems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا