ﻻ يوجد ملخص باللغة العربية
We study the one-loop gluon polarization tensor at zero and finite temperature in the presence of a magnetic field, to extract the thermo-magnetic evolution of the strong coupling $alpha_s$. We analyze four distinct regimes, to wit, the small and large field cases, both at zero and at high temperature. From a renormalization group analysis we show that at zero temperature, either for small or large magnetic fields, and for a fixed transferred momentum $Q^2$, $alpha_s$ grows with the field strength with respect to its vacuum value. However, at high temperature and also for a fixed value of $Q^2$ we find two different cases: When the magnetic field is even larger than the squared temperature, $alpha_s$ also grows with the field strength. On the contrary, when the squared temperature is larger than the magnetic field, a turnover behavior occurs and $alpha_s$ decreases with the field strength. This thermo-magnetic behavior of $alpha_s$ can help explain the inverse magnetic catalysis phenomenon found by lattice QCD calculations.
We study the thermo-magnetic properties of the strong coupling constant G and quark mass M entering the Nambu-Jona-Lasinio model. For this purpose, we compute the quark condensate and compare it to lattice QCD (LQCD) results to extract the behavior o
We have computed the chiral susceptibility in quark-gluon plasma in presence of finite chemical potential and weak magnetic field within hard thermal loop approximation. First we construct the massive effective quark propagator in a thermomagnetic me
We investigate the chiral phase transition in the strong coupling lattice QCD at finite temperature and density with finite coupling effects. We adopt one species of staggered fermion, and develop an analytic formulation based on strong coupling and
We discuss the QCD phase diagram in the strong coupling limit of lattice QCD by using a new type of mean field coming from the next-to-leading order of the large dimensional expansion. The QCD phase diagram in the strong coupling limit recently obtai
We report on the first computation of the strong running coupling at the physical point (physical pion mass) from the ghost-gluon vertex, computed from lattice simulations with three flavors of Domain Wall fermions. We find $alpha_{overline{rm MS}}(m