ﻻ يوجد ملخص باللغة العربية
Both theoretical interest and practical significance attach to the sign and strength of Casimir forces. A famous, discouraging no-go theorem states that The Casimir force between two bodies with reflection symmetry is always attractive. Here we identify a loophole in the reasoning, and propose a universal way to realize repulsive Casimir forces. We show that the sign and strength of Casimir forces can be adjusted by inserting optically active or gyrotropic media between bodies, and modulated by external fields.
We use the extended Lifshitz theory to study the behaviors of the Casimir forces between finite-thickness effective medium slabs. We first study the interaction between a semi-infinite Drude metal and a finite-thickness magnetic slab with or without
Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general Lifshitz configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity
In our previous work [Phys. Rev. Lett. 103, 103602 (2009)], we found that repulsive Casimir forces could be realized by using chiral metamaterials if the chirality is strong enough. In this work, we check four different chiral metamaterial designs (i
We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the in
Electromagnetism in substance is characterized by permittivity (dielectric constant) and permeability (magnetic permeability). They describe the substance property {it effectively}. We present a {it geometric} approach to it. Some models are presente