ﻻ يوجد ملخص باللغة العربية
In single-pixel imaging (SPI), the target object is illuminated with varying patterns sequentially and an intensity sequence is recorded by a single-pixel detector without spatial resolution. A high quality object image can only be computationally reconstructed after a large number of illuminations, with disadvantages of long imaging time and high cost. Conventionally, object classification is performed after a reconstructed object image with good fidelity is available. In this paper, we propose to classify the target object with a small number of illuminations in a fast manner for Fourier SPI. A naive Bayes classifier is employed to classify the target objects based on the single-pixel intensity sequence without any image reconstruction and each sequence element is regarded as an object feature in the classifier. Simulation results demonstrate our proposed scheme can classify the number digit object images with high accuracy (e.g. 80% accuracy using only 13 illuminations, at a sampling ratio of 0.3%).
Video object segmentation, aiming to segment the foreground objects given the annotation of the first frame, has been attracting increasing attentions. Many state-of-the-art approaches have achieved great performance by relying on online model updati
As an alternative to conventional multi-pixel cameras, single-pixel cameras enable images to be recorded using a single detector that measures the correlations between the scene and a set of patterns. However, to fully sample a scene in this way requ
Voxel-based 3D object classification has been frequently studied in recent years. The previous methods often directly convert the classic 2D convolution into a 3D form applied to an object with binary voxel representation. In this paper, we investiga
Two novel visual cryptography (VC) schemes are proposed by combining VC with single-pixel imaging (SPI) for the first time. It is pointed out that the overlapping of visual key images in VC is similar to the superposition of pixel intensities by a si
Single-pixel imaging is a novel imaging scheme that has gained popularity due to its huge computational gain and potential for a low-cost alternative to imaging beyond the visible spectrum. The traditional reconstruction methods struggle to produce a