ﻻ يوجد ملخص باللغة العربية
Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry $10^{21}$ to $10^{24}$ erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from $10^{20}$ to $10^{23}$ ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.
Solar flares are sudden energy release events in the solar corona, resulting from magnetic reconnection, that accelerates particles and heats the ambient plasma. During a flare, there are often multiple, temporally and spatially separated individual
We present a high fidelity snapshot spectroscopic radio imaging study of a weak type I solar noise storm which took place during an otherwise exceptionally quiet time. Using high fidelity images from the Murchison Widefield Array, we track the observ
Small scale transients occur in the Solar corona at much higher frequencies than flares and play a significant role in coronal dynamics. Here we study three well-identified transients discovered by Hi-C and also detected by the EUV channels of Atmosp
Aims: We investigate the electron acceleration in convective electric fields of cascading magnetic reconnection in a flaring solar corona and show the resulting hard X-ray (HXR) radiation spectra caused by Bremsstrahlung for the coronal source. Metho
The quiet solar corona emits meter-wave thermal bremsstrahlung. Coronal radio emission can only propagate above that radius, $R_omega$, where the local plasma frequency eqals the observing frequency. The radio interferometer LOw Frequency ARray (LOFA