ﻻ يوجد ملخص باللغة العربية
Mechanism calibration is an important and non-trivial task in robotics. Advances in sensor technology make affordable but increasingly accurate devices such as cameras and tactile sensors available, making it possible to perform automated self-contained calibration relying on redundant information in these sensory streams. In this work, we use a simulated iCub humanoid robot with a stereo camera system and end-effector contact emulation to quantitatively compare the performance of kinematic calibration by employing different combinations of intersecting kinematic chains -- either through self-observation or self-touch. The parameters varied were: (i) type and number of intersecting kinematic chains used for calibration, (ii) parameters and chains subject to optimization, (iii) amount of initial perturbation of kinematic parameters, (iv) number of poses/configurations used for optimization, (v) amount of measurement noise in end-effector positions / cameras. The main findings are: (1) calibrating parameters of a single chain (e.g. one arm) by employing multiple kinematic chains (self-observation and self-touch) is superior in terms of optimization results as well as observability; (2) when using multi-chain calibration, fewer poses suffice to get similar performance compared to when for example only observation from a single camera is used; (3) parameters of all chains (here 86 DH parameters) can be subject to calibration simultaneously and with 50 (100) poses, end-effector error of around 2 (1) mm can be achieved; (4) adding noise to a sensory modality degrades performance of all calibrations employing the chains relying on this information.
Achieving short-distance flight helps improve the efficiency of humanoid robots moving in complex environments (e.g., crossing large obstacles or reaching high places) for rapid emergency missions. This study proposes a design of a flying humanoid ro
The mechanisms of infant development are far from understood. Learning about ones own body is likely a foundation for subsequent development. Here we look specifically at the problem of how spontaneous touches to the body in early infancy may give ri
In order to detect and correct physical exercises, a Grow-When-Required Network (GWR) with recurrent connections, episodic memory and a novel subnode mechanism is developed in order to learn spatiotemporal relationships of body movements and poses. O
The hierarchical quadratic programming (HQP) is commonly applied to consider strict hierarchies of multi-tasks and robots physical inequality constraints during whole-body compliance. However, for the one-step HQP, the solution can oscillate when it
In the current level of evolution of Soccer 3D, motion control is a key factor in teams performance. Recent works takes advantages of model-free approaches based on Machine Learning to exploit robot dynamics in order to obtain faster locomotion skill