ﻻ يوجد ملخص باللغة العربية
In this paper we classify Euclidean hypersurfaces $fcolon M^n rightarrow mathbb{R}^{n+1}$ with a principal curvature of multiplicity $n-2$ that admit a genuine conformal deformation $tilde{f}colon M^n rightarrow mathbb{R}^{n+2}$. That $tilde{f}colon M^n rightarrow mathbb{R}^{n+2}$ is a genuine conformal deformation of $f$ means that it is a conformal immersion for which there exists no open subset $U subset M^n$ such that the restriction $tilde{f}|_U$ is a composition $tilde f|_U=hcirc f|_U$ of $f|_U$ with a conformal immersion $hcolon Vto mathbb{R}^{n+2}$ of an open subset $Vsubset mathbb{R}^{n+1}$ containing $f(U)$.
We classify the hypersurfaces of Euclidean space that carry a totally geodesic foliation with complete leaves of codimension one. In particular, we show that rotation hypersurfaces with complete profiles of codimension one are characterized by their
In the realm of conformal geometry, we give a classification of the Euclidean hypersurfaces that admit a non-trivial conformal infinitesimal variation. In the restricted case of conformal variations, such a classification was obtained by E. Cartan in
The purpose of this work is to close the local deformation problem of rank two Euclidean submanifolds in codimension two by describing their moduli space of deformations. In the process, we provide an explicit simple representation of these submanifo
The main purpose of this paper is to complete the work initiated by Sbrana in 1909 giving a complete local classification of the nonflat infinitesimally bendable hypersurfaces in Euclidean space.
Let $fcolon M^{2n}tomathbb{R}^{2n+ell}$, $n geq 5$, denote a conformal immersion into Euclidean space with codimension $ell$ of a Kaehler manifold of complex dimension $n$ and free of flat points. For codimensions $ell=1,2$ we show that such a subman