ﻻ يوجد ملخص باللغة العربية
We investigate theoretically frequency comb generation in a bottle microresonator accounting for the azimuthal and axial degrees of freedom. We first identify a discrete set of the axial nonlinear modes of a bottle microresonator that appear as tilted resonances bifurcating from the spectrum of linear axial modes. We then study azimuthal modulational instability of these modes and show that families of 2D soliton states localized both azimuthally and axially bifurcate from them at critical pump frequencies. Depending on detuning, 2D solitons can be either stable, or form persistent breathers, chaotic spatio-temporal patterns, or exhibit collapse-like evolution.
We introduce the first principle model describing frequency comb generation in a WGM microresonator with the backscattering-induced coupling between the counter-propagating waves. {Elaborated model provides deep insight and accurate description of th
Soliton crystals are periodic patterns of multi-spot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years
Recent experiments have demonstrated the generation of widely-spaced parametric sidebands that can evolve into clustered optical frequency combs in Kerr microresonators. Here we describe the physics that underpins the formation of such clustered comb
We predict the existence of a novel type of the flat-top dissipative solitonic pulses, platicons, in microresonators with normal group velocity dispersion (GVD). We propose methods to generate these platicons from cw pump. Their duration may be alter
We analyze the consequences of dissipative heating in driven Kerr microresonators theoretically and numerically, using a thermal Lugiato-Lefever model. We show that thermal sensitivity modifies the stability range of continuous wave in a way that blo