ﻻ يوجد ملخص باللغة العربية
Let $C$ be a depth-3 arithmetic circuit of size at most $s$, computing a polynomial $ f in mathbb{F}[x_1,ldots, x_n] $ (where $mathbb{F}$ = $mathbb{Q}$ or $mathbb{C}$) and the fan-in of the product gates of $C$ is bounded by $d$. We give a deterministic polynomial identity testing algorithm to check whether $fequiv 0$ or not in time $ 2^d text{ poly}(n,s) $.
We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not ha
We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is an
In this paper we study arithmetic computations in the nonassociative, and noncommutative free polynomial ring $mathbb{F}{x_1,x_2,ldots,x_n}$. Prior to this work, nonassociative arithmetic computation was considered by Hrubes, Wigderson, and Yehudayof
Consider the problem of determining whether there exists a spanning hypertree in a given k-uniform hypergraph. This problem is trivially in P for k=2, and is NP-complete for k>= 4, whereas for k=3, there exists a polynomial-time algorithm based on Lo
We investigate the complexity of uniform OR circuits and AND circuits of polynomial-size and depth. As their name suggests, OR circuits have OR gates as their computation gates, as well as the usual input, output and constant (0/1) gates. As is the n