The edge Szeged index of a graph $G$ is defined as $Sz_{e}(G)=sumlimits_{uvin E(G)}m_{u}(uv|G)m_{v}(uv|G)$, where $m_{u}(uv|G)$ (resp., $m_{v}(uv|G)$) is the number of edges whose distance to vertex $u$ (resp., $v$) is smaller than the distance to vertex $v$ (resp., $u$), respectively. In this paper, we characterize the graph with minimum edge Szeged index among all the unicyclic graphs with given order and diameter.