ترغب بنشر مسار تعليمي؟ اضغط هنا

Single production of vector-like quarks with large width at the Large Hadron Collider

205   0   0.0 ( 0 )
 نشر من قبل Luca Panizzi
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Vector-Like Quarks (VLQs) are predicted by several theoretical scenarios of new physics and, having colour quantum numbers, can copiously be produced at the Large Hadron Collider (LHC), so long that their mass is in the testable kinematic regime of such a machine. While it would be convenient to assume that such objects are narrow and can be treated in the so-called Narrow Width Approximation (NWA), this is not always possible, owing to the fact that couplings and particle content of such new physics scenarios are not generally constrained, so that a large value of the former and/or a large variety of VLQ decay channels into the latter can contribute to generate a large decay width for such extra quarks. We have addressed here the issue of how best to tackle in LHC analysis the presence of large (and model-dependent) interference effects between different VLQ production and decay channels as well as between these and the corresponding irreducible background. We have confined ourselves to the case of single production of VLQs, which is rapidly becoming a channel of choice in experimental searches owing to the ever increasing limits on their mass, in turn depleting the yield of the historically well-established double production channel. Indeed, this poses a further challenge, as the former is model-dependent while the latter is essentially not. Despite these conditions, we show here that an efficient approach is possible, which retains to a large extent a degree of model independence in phenomenological studies of such VLQ dynamics at the LHC.



قيم البحث

اقرأ أيضاً

We provide a comprehensive discussion, together with a complete setup for simulations, relevant for the production of a single vector-like quark at hadron colliders. Our predictions include finite width effects, signal-background interference effects and next-to-leading order QCD corrections. We explicitly apply the framework to study the single production of a vector-like quark $T$ with charge 2/3, but the same procedure can be used to analyse the single production of vector-like quarks with charge $-4/3$, $-1/3$, $2/3$ and $5/3$, when the vector-like quark interacts with the Standard Model quarks and electroweak bosons. Moreover, this procedure can be straightforwardly extended to include additional interactions with exotic particles. We provide quantitative results for representative benchmark scenarios characterised by the $T$ mass and width, and we determine the role of the interference terms for a range of masses and widths of phenomenological significance. We additionally describe in detail, both analytically and numerically, a striking feature in the invariant mass distribution appearing only in the $T to th$ channel.
132 - U. Baur 2007
Many new physics models predict resonances with masses in the TeV range which decay into a pair of top quarks. With its large cross section, tbar t production at the Large Hadron Collider (LHC) offers an excellent opportunity to search for such parti cles. The identification of very energetic top quarks is crucial in such an analysis. We consider in detail the tbar ttoell^pm u bbar bqbar q (ell=e, mu) final state for high p_T top quarks. In this phase space region, two or more of the final state quarks can merge into a single jet due to the large Lorentz boost of the parent top quark. As a result, a large fraction of tbar ttoell^pm u bbar bqbar q events with an invariant mass in the TeV region contains less than four observable jets. Requiring one or two tagged b-quarks, we calculate the W+jets, Wb+jets, Wbbar b+jets, Wbt, and single top plus jets backgrounds for these final states, and identify cuts which help to suppress them. In particular, we discuss whether a cut on the jet invariant mass may be useful in reducing the background in the ell u+2 jets channel. We also investigate how next-to-leading order QCD corrections affect high p_T top quark production at the LHC. We find that the ell u+2 jets and ell u+3 jets final states with one or two $b$-tags will significantly improve the chances for discovering new heavy particles in the tbar t channel at the LHC.
New physics at the TeV scale is highly anticipated at the LHC. New particles with color, if within the LHC energy reach, will be copiously produced. One such particle is a diquark, having the quantum numbers of two quarks, and can be a scalar or a ve ctor. It will decay to two light quarks, or two top quarks, or a top and a light quark, (up or down type depending on the quantum number of the produced diquark). If singly produced, it can be looked for as a dijet resonance, or as giving extra contribution to the single top production or tt production. In this work, we consider a color sextet vector diquark having the quantum number of (ud) type, its resonance production, and the subsequent decay to tb, giving rise to excess contribution to the single top production. Even though the diquark mass is large, its strong resonance production dominate the weak production of tb for a wide range of the diquark mass. Also its subsequent decay to tb produce a very hard b-jet compared to the usual electroweak production. In addition, the missing energy in the final state event is much larger from the massive diquark decays. Thus, with suitable cuts, the final state with b, bar{b} and a charged lepton together with large missing energy stands out compared to the Standard Model background. We make a detailed study of both the signal and the background. We find that such a diquark is accessible at the 7 TeV LHC upto a mass of about 3.3 TeV with the luminosity 1 fb^{-1}, while the reach goes up to about 4.3 TeV with a luminosity of 10 fb^{-1}.
We consider the pair production of color triplet spin-3/2 quarks and their subsequent decays at the LHC. This particle, if produced, will most likely decay into top quark and gluon, bottom quark and gluon, or a light quark jet and gluon, depending on the quantum number of the spin-3/2 particle. This would lead to signals with ttbar+jj, bbbar+jj, or 4j in the final states. We present a detailed analysis of the signals and backgrounds at sqrt{s}= 7, 8 and 14 TeV and show the reach for such particles by solving for observable mass values for the spin-3/2 quarks through its decay products.
The production of two weak bosons at the Large Hadron Collider will be one of the most important sources of SM backgrounds for final states with multiple leptons. In this paper we consider several quantities that can help normalize the production of weak boson pairs. Ratios of inclusive cross-sections for production of two weak bosons and Drell-Yan are investigated and the corresponding theoretical errors are evaluated. The possibility of predicting the jet veto survival probability of VV production from Drell-Yan data is also considered. Overall, the theoretical errors on all quantities remain less than 5-20%. The dependence of these quantities on the center of mass energy of the proton-proton collision is also studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا