ترغب بنشر مسار تعليمي؟ اضغط هنا

Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations

136   0   0.0 ( 0 )
 نشر من قبل Sosuke Kobayashi
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Sosuke Kobayashi




اسأل ChatGPT حول البحث

We propose a novel data augmentation for labeled sentences called contextual augmentation. We assume an invariance that sentences are natural even if the words in the sentences are replaced with other words with paradigmatic relations. We stochastically replace words with other words that are predicted by a bi-directional language model at the word positions. Words predicted according to a context are numerous but appropriate for the augmentation of the original words. Furthermore, we retrofit a language model with a label-conditional architecture, which allows the model to augment sentences without breaking the label-compatibility. Through the experiments for six various different text classification tasks, we demonstrate that the proposed method improves classifiers based on the convolutional or recurrent neural networks.



قيم البحث

اقرأ أيضاً

Unsupervised Data Augmentation (UDA) is a semi-supervised technique that applies a consistency loss to penalize differences between a models predictions on (a) observed (unlabeled) examples; and (b) corresponding noised examples produced via data aug mentation. While UDA has gained popularity for text classification, open questions linger over which design decisions are necessary and over how to extend the method to sequence labeling tasks. This method has recently gained traction for text classification. In this paper, we re-examine UDA and demonstrate its efficacy on several sequential tasks. Our main contribution is an empirical study of UDA to establish which components of the algorithm confer benefits in NLP. Notably, although prior work has emphasized the use of clever augmentation techniques including back-translation, we find that enforcing consistency between predictions assigned to observed and randomly substituted words often yields comparable (or greater) benefits compared to these complex perturbation models. Furthermore, we find that applying its consistency loss affords meaningful gains without any unlabeled data at all, i.e., in a standard supervised setting. In short: UDA need not be unsupervised, and does not require complex data augmentation to be effective.
We propose a novel data augmentation method for labeled sentences called conditional BERT contextual augmentation. Data augmentation methods are often applied to prevent overfitting and improve generalization of deep neural network models. Recently p roposed contextual augmentation augments labeled sentences by randomly replacing words with more varied substitutions predicted by language model. BERT demonstrates that a deep bidirectional language model is more powerful than either an unidirectional language model or the shallow concatenation of a forward and backward model. We retrofit BERT to conditional BERT by introducing a new conditional masked language modelfootnote{The term conditional masked language model appeared once in original BERT paper, which indicates context-conditional, is equivalent to term masked language model. In our paper, conditional masked language model indicates we apply extra label-conditional constraint to the masked language model.} task. The well trained conditional BERT can be applied to enhance contextual augmentation. Experiments on six various different text classification tasks show that our method can be easily applied to both convolutional or recurrent neural networks classifier to obtain obvious improvement.
The automatic detection of hypernymy relationships represents a challenging problem in NLP. The successful application of state-of-the-art supervised approaches using distributed representations has generally been impeded by the limited availability of high quality training data. We have developed two novel data augmentation techniques which generate new training examples from existing ones. First, we combine the linguistic principles of hypernym transitivity and intersective modifier-noun composition to generate additional pairs of vectors, such as small dog - dog or small dog - animal, for which a hypernymy relationship can be assumed. Second, we use generative adversarial networks (GANs) to generate pairs of vectors for which the hypernymy relation can also be assumed. We furthermore present two complementary strategies for extending an existing dataset by leveraging linguistic resources such as WordNet. Using an evaluation across 3 different datasets for hypernymy detection and 2 different vector spaces, we demonstrate that both of the proposed automatic data augmentation and dataset extension strategies substantially improve classifier performance.
105 - Ping Yu , Ruiyi Zhang , Yang Zhao 2021
Data augmentation has been widely used to improve deep neural networks in many research fields, such as computer vision. However, less work has been done in the context of text, partially due to its discrete nature and the complexity of natural langu ages. In this paper, we propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation. Unlike most existing sentence-level augmentation strategies, which are only applied to specific models, our method is more general and could be easily adapted to any MLE-based training procedure. In addition, our framework allows task-specific evaluation metrics to be designed to flexibly control the generated sentences, for example, in terms of controlling vocabulary usage and avoiding nontrivial repetitions. Extensive experimental results demonstrate the superiority of our method on two synthetic and several standard real datasets, significantly improving related baselines.
Despite their empirical success, neural networks still have difficulty capturing compositional aspects of natural language. This work proposes a simple data augmentation approach to encourage compositional behavior in neural models for sequence-to-se quence problems. Our approach, SeqMix, creates new synthetic examples by softly combining input/output sequences from the training set. We connect this approach to existing techniques such as SwitchOut and word dropout, and show that these techniques are all approximating variants of a single objective. SeqMix consistently yields approximately 1.0 BLEU improvement on five different translation datasets over strong Transformer baselines. On tasks that require strong compositional generalization such as SCAN and semantic parsing, SeqMix also offers further improvements.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا