ﻻ يوجد ملخص باللغة العربية
Conditional dynamics due to continuous optical measurements has successfully been applied for state reconstruction and feedback cooling in optomechanical systems. In this article, we show that the same measurement techniques can be used to unravel nonclassicality in optomechanical limit cycles. In contrast to unconditional dynamics, our approach gives rise to nonclassical limit cycles even in the sideband-unresolved regime, where the cavity decay rate exceeds the mechanical frequency. We predict a significant reduction of the mechanical amplitude fluctuations for realistic experimental parameters.
Quadrature squeezing of light is investigated in a hybrid atom-optomechanical system comprising a cloud of two-level atoms and a movable mirror mediated by a single-mode cavity field. When the system is at high temperatures with quadrature fluctuatio
Classical optomechanical systems feature self-sustained oscillations, where multiple periodic orbits at different amplitudes coexist. We study how this multistability is realized in the quantum regime, where new dynamical patterns appear because quan
We analyze the photon statistics of a weakly driven optomechanical system and discuss the effect of photon blockade under single photon strong coupling conditions. We present an intuitive interpretation of this effect in terms of displaced oscillator
Quantum teleportation, the faithful transfer of an unknown input state onto a remote quantum system, is a key component in long distance quantum communication protocols and distributed quantum computing. At the same time, high frequency nano-optomech
We compare two approaches to refine the linear model of cavity optomechanics, in order to describe radiation pressure effects that are beyond first order in the coupling constant. We compare corrections derived from (I) a widely used phenomenological