On Affine Tropical F5 Algorithms


الملخص بالإنكليزية

Let $K$ be a field equipped with a valuation. Tropical varieties over $K$ can be defined with a theory of Gr{o}bner bases taking into account the valuation of $K$.Because of the use of the valuation, the theory of tropical Gr{o}bner bases has proved to provide settings for computations over polynomial rings over a $p$-adic field that are more stable than that of classical Gr{o}bner bases.Beforehand, these strategies were only available for homogeneous polynomials. In this article, we extend the F5 strategy to a new definition of tropical Gr{o}bner bases in an affine setting.We provide numerical examples to illustrate time-complexity and $p$-adic stability of this tropical F5 algorithm.We also illustrate its merits as a first step before an FGLM algorithm to compute (classical) lex bases over $p$-adics.

تحميل البحث