ﻻ يوجد ملخص باللغة العربية
We study theoretically dynamics of a driven-dissipative qubit-resonator system. Specifically, a transmon qubit is coupled to a transmission-line resonator; this system is considered to be probed via a resonator, by means of either continuous or pulsed measurements. Analytical results obtained in the semiclassical approximation are compared with calculations in the semi-quantum theory as well as with the previous experiments. We demonstrate that the temperature dependence of the resonator frequency shift can be used for the system thermometry and that the dynamics, displaying pinched-hysteretic curve, can be useful for realization of memory devices, the quantum memcapacitors.
Superconducting qubits acting as artificial two-level atoms allow for controlled variation of the symmetry properties which govern the selection rules for single and multiphoton excitation. We spectroscopically analyze a superconducting qubit-resonat
We study the dynamics of a qubit-resonator system, when the resonator is driven by two signals. The interaction of the qubit with the high-amplitude driving we consider in terms of the qubit dressed states. Interaction of the dressed qubit with the s
Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, diamond high-overtone bulk acoustic resonators (HBARs)
We demonstrate high-contrast state detection of a superconducting flux qubit. Detection is realized by probing the microwave transmission of a nonlinear resonator, based on a SQUID. Depending on the driving strength of the resonator, the detector can
Long-distance two-qubit coupling, mediated by a superconducting resonator, is a leading paradigm for performing entangling operations in a quantum computer based on spins in semiconducting materials. Here, we demonstrate a novel, controllable spin-ph