ﻻ يوجد ملخص باللغة العربية
We propose a novel algorithmic framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-gradient (VMOR-HPE) method with a global convergence guarantee for the maximal monotone operator inclusion problem. Its iteration complexities and local linear convergence rate are provided, which theoretically demonstrate that a large over-relaxed step-size contributes to accelerating the proposed VMOR-HPE as a byproduct. Specifically, we find that a large class of primal and primal-dual operator splitting algorithms are all special cases of VMOR-HPE. Hence, the proposed framework offers a new insight into these operator splitting algorithms. In addition, we apply VMOR-HPE to the Karush-Kuhn-Tucker (KKT) generalized equation of linear equality constrained multi-block composite convex optimization, yielding a new algorithm, namely nonsymmetric Proximal Alternating Direction Method of Multipliers with a preconditioned Extra-gradient step in which the preconditioned metric is generated by a blockwise Barzilai-Borwein line search technique (PADMM-EBB). We also establish iteration complexities of PADMM-EBB in terms of the KKT residual. Finally, we apply PADMM-EBB to handle the nonnegative dual graph regularized low-rank representation problem. Promising results on synthetic and real datasets corroborate the efficacy of PADMM-EBB.
Stochastic gradient methods (SGMs) have been extensively used for solving stochastic problems or large-scale machine learning problems. Recent works employ various techniques to improve the convergence rate of SGMs for both convex and nonconvex cases
Sparsity-inducing regularization problems are ubiquitous in machine learning applications, ranging from feature selection to model compression. In this paper, we present a novel stochastic method -- Orthant Based Proximal Stochastic Gradient Method (
In this paper, we develop an inexact Bregman proximal gradient (iBPG) method based on a novel two-point inexact stopping condition, and establish the iteration complexity of $mathcal{O}(1/k)$ as well as the convergence of the sequence under some prop
We examine the linear convergence rates of variants of the proximal point method for finding zeros of maximal monotone operators. We begin by showing how metric subregularity is sufficient for linear convergence to a zero of a maximal monotone operat
Riemannian optimization has drawn a lot of attention due to its wide applications in practice. Riemannian stochastic first-order algorithms have been studied in the literature to solve large-scale machine learning problems over Riemannian manifolds.